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Abstract

We study the Poisson sigma model which can be viewed as a topological string theory. Mainly
we concentrate our attention on the Poisson sigma model over a group mahifital a Poisson—
Lie structure. In this case the flat connection conditions arise naturally. The boundary conditions
(D-branes) are studied in this model. It turns out that the D-branes are labelled by the coisotropic
subgroups off. We give a description of the moduli space of classical solutions over Riemann surfaces
both without and with boundaries. Finally we comment briefly on the duality properties of the model.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The Poisson sigma model introduced116,25] is a topological two-dimensional field
theory with the tangent spadel being a Poisson manifold. The model is closely related to
other two-dimensional models such as gravity models, the Wess—Zumino-Witten models
and two-dimensional Yang—Mills theory. Recently the Poisson sigma model has attracted
considerable attention due to its relation to deformation quantization. Namely it has been
shown in[8] that the perturbative path integral expansion of the Poisson sigma model over
the disk leads to the Kontsevich’s star prodiadt].
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In the present paper, we conduct a systematic investigation of the classical Poisson sigma
model with the target space being a Poisson-Lie group. We consider the model defined
over Riemann surfaces both with and without boundaries. The Poisson—Lie groups are the
semiclassical limit of quantum groups, therefore by exploring these models at the quantum
level we may hope to find new insights into quantum groups. This could be considered as the
main motivation for the project. In the present paper, we take the first step in this direction
and explore the classical theory, we hope to come back to the quantum theory elsewhere.

The key observation of the paper is that the Poisson action of a Poisson-Lie group on a
target manifold implies the existence of a flat connection in the corresponding model. In par-
ticular if the target manifold is a Poisson—Lie group then the on-shell Poisson sigma model
can be reformulated in terms of the flat connections of an appropriate principal bundle and
the parallel section of an associated fiber bundle. Moreover the infinitesimal on-shell gauge
transformations can be interpreted as dressing transformations and integrated to define finite
gauge transformations. This allows us to define the space of solutions modulo gauge transfor-
mations. Since the dressing transformations are transitive on symplectic leaves, the moduli
space can be characterized in terms of the space of leaves. Another important point is that
the boundary conditions are labelled by the coisotropic subgroups of the Poisson-Lie group.

Some of these issues have been already addressed in the literature. Previously the Poisson
sigma model over the Poisson-Lie group has been considejf@dLB] in connection to
G/G Wess—Zumino—Witten theories. While our project was in progress the [Wpitkas
appeared where the systematic study of Poisson sigma models over Poisson-Lie groups
has been attempted. Despite some intersections between the results of tfig)\aackthe
present paper, hopefully we can offer a reasonably complete picture of the classical model
and clarify some important issues. The spaces of classical solutions of the Poisson sigma
models have also been discussed previously (e.g., see the recefbjanll the references
therein). The important recent wofR] should be mentioned where the first systematic
study of general boundary conditions for the Poisson sigma model has been undertaken. In
the present paper, we clarify some general issues and as well as we give an illustration of
the possible boundary conditions which are specific for the Poisson—Lie case.

The paper is organized as follows.$ection 2we review the relevant notions from the
theory of Poisson manifolds and Poisson-Lie group&eation 3we recall the definition
of the Poisson sigma model and go on to discuss the general boundary conditions for the
modelin particular. We arrive at the same result d8jirhowever the derivation is somewhat
different. InSection 4we analyze the relation between the group action on the target space
and the symmetries (and their generalizations) of the Poisson sigma model. The main
observation is that the Poisson action of a Poisson-Lie group implies the flat connection
conditions for the Poisson sigma model. TherSiection 5we apply these results to the
specific case when the target space is a group manifold itself. The on-shell model can be
rewritten in terms of new variables which have a clear geometrical interpretation: the flat
connection of the principal bundle and the parallel section of the associated fiber bundle.
We also offer the appropriate description of the boundary conditions in this context. Using
these results iBsection 6we construct the moduli spaces of the classical solutions of the
model over a generic Riemann surface both with and without boundaries. The description
that we obtain connects the moduli space to the space of symplectic leaves. This space of
leaves describes a very intrinsic property of the Poisson structure. Since our considerations
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are only based on the condition that the dressing transformations are complete, the results
are very general. On the other hand it is necessary to have more specific information about
the model in order to give more explicit description of the moduli space. As an illustration

of our formal results we discuss briefly the BF-theorgerction 7 Section &ontains some
observations about the duality which is supposed to relate two models over different (but
dual) Poisson-Lie groups. Finally, Bection 9we summarize the results and offer some
speculations about the possible further development of our work.

2. Poisson structures associated to Lie groups

In this section we review some basic notions and fix notations. Namely we collect some
general facts concerning Poisson manifolds and Poisson—-Lie groupg&e2g] for a
general reference.

A smooth manifoldM is called aPoissormanifold if there exists a tensare A27T* M
suchthat§, a]sn = 0. The bracket]| ]sndenotes the Schouten—Nijenhuis bracket for the an-
tisymmetric contravariant tensor fields. In local coordinates, «*"d,, A d,, this amounts
to the following equation:

3,0 + %90 + a9, = 0. (2.2)

The Poisson bracket aff°(M) is defined a$f. g} = (df ® dg, o). Amapg : M — N
between two Poisson manifolds is a Poisson mapdfy(x) = apn{¢(x)), for eachk € M.

If M is an even dimensional manifold andhas maximal rank them—1 is a symplectic
form. Inthe general casedefines a symplectic foliation. The tangent space to the symplectic
leaf passing through € M is §(T; M) where the sharp map: 7* M, — T M, is defined
by f(wx) = (wx, a(x)), for wy € T¥ M. In the local coordinates we have thtx*) =
a™'d,. Each leaf turns out to be symplectic. A Poisson manifold can be defined by giving
its symplectic foliation instead of the Poisson bivector.

One can define a Lie-bracket on one forsa§(M); it satisfies{df dg} = d{f g} for
everyf, g € C*°(M) andtg defines a Lie algebra homomorphism between forms and vector
fields. We refer t428] for the complete definition.

A submanifoldD of M is calledcoisotropicif #(N¥D) C T,D for eachx € D, where
NID = {wy € T M|{wy, vx) = 0,V v, € T, D}isthefibreint € D ofthe conormal bundle
of D. Symplectic leaves and preimages of symplectic leaves under a Poisson map are
examples of coisotropic submanifolds.

If the Poisson manifold is a Lie groupthen it is natural to ask about the compatibility
between the Poisson bracket and the group multiplication. A Lie géowpich is also a
Poisson manifold is calledRoisson—Lie grouff the group multiplicationn : G x G — G
is a Poisson map (where we assumejon G the canonical Poisson structure of the direct
product). Let us denote by, andr, the left and right translations gfe G correspondingly.
Then one can show thétis a Poisson—Lie if and only if the Poisson tenamatisfies the
following property:

@(8182) = Lg1x(c(g2)) + rgpu(a(g1))- (2.2)
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One can verify thak(e) = 0, i.e. the identity is always a degenerate point, so that a Poisson—
Lie group can never be symplectic.

A crucial property for a simply connected Poisson-Lie group is that it defines a dual
Poisson-Lie group. Lag be the Lie algebra of; ong* = T,°G the bracket

{d.fdeg} =d.{f g}, fge Coo(g) (2.3)

defines a structure of Lie algebra. IBtbe the (simply connected) group whose Lie algebra
is g*. It can be shown that algg* is a Poisson—Lie group and th@t* is G; we refer toG*
as thedual groupof G.

The left invariant forms irg close a finite-dimensional subalgebra®¥(G) and define a
canonical realization af*; by applying thet map we also get a realization gf as vector
fields. Let{T} be a basis off and let{T4} be the dual basis @*: structure constants are
defined asTx, T] = fa5CTc and [T4, TB] = FAB-TC. Let {w”} be the corresponding
basis of left invariant forms o, and let{s* = #w"} be the so-calledressing vector fields
Thus we have that

[s*, s8] = F4BcsC, (2.4)
where [, ] is the Lie-bracket for the vector fields and
(o, o) = FAPc0C. (2.5)

If the dressing vector fields are complete then the corresponding actifinoofG is called
thedressing actiomndg is called acompletdPoisson—Lie group. For example, any compact
Poisson—Lie group and its dual are complete.

The action of a Poisson—Lie grou@,(w) on a Poisson manifoldM, «) is Poisson if
the mapp : G x M — M, ¢(g, x) = gx is a Poisson map. One can show that this leads to
the following property:

a(gx) = dga(x) + drw(g), (2.6)

whereg, : M — M, ¢,(x) = ¢(g, x), and¢* : G — M, ¢*(g) = ¢(g, x). The dressing
action ofG* ongGis Poisson; furthermore itis transitive on symplectic leaves. The symplectic
leaves are the orbits of the dressing action and therefore, in analogy with the coadjoint orbits,
the symplectic leaf can be thought of as a homogeneous §padg’ / H s, x,), WhereH s, )

is stability subgroup of a fixed poing € S.

A subgroup? is a Poisson—Lie subgrouf it is a Poisson—Lie group itself and the
injection map is a Poisson morphism. A subgrédpC G is said to becoisotropicif it is a
coisotropic submanifold (sd27,30,24]for what follows). Every Poisson—Lie subgroup is
coisotropic but it is not true the opposite. étbe connected and latbe its Lie algebra. It
can be shown thatl C G is coisotropic if and only ih* is a Lie subalgebra aj*, where
h' c g* is the annihilator oh. To each coisotropic subgro@p of G we can associate the
subgroupX=* of G*, whose Lie algebra igt. Sinceht™ = h thenH~ is a coisotropic
subgroup of7*; we call#* thecomplementary duaif A.

If H is a closed coisotropic subgroup, the map: G — G/H defines a Poisson tensor
on the homogeneous spaggH such thatpy is a Poisson map. So the actiongdén G/H
is Poisson anghy () € G/H is a degenerate point; in this case the Poisson structure is never
symplectic.
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We will need the following observation. Let us introduce a basigsach tha{ 74 }'27{:1 is
abasis foh, itis clear thafw” (x)} 4~ ,, is a basis foN:H for eachx € H ands” (x) € T, H
for eachA > ny; i.e. the dressing action 6{* leavesH invariant.

The important role played by coisotropic subgroups is fully appreciated in the quantiza-
tion process (sejd.0] for the following considerations). There exists a quantum counterpart
of the construction of Poisson homogeneous spaces described above. It is an experimental
fact of quantum groups that coisotropic subgroups are quantized; they define the so-called
guantum coisotropic subgrougs quantum groups. By using them it is possible to con-
struct all the so-called embeddable quantum homogeneous spaces as quotient of quantum
groups. See for instan¢6] for the role played by coisotropic subgroups of standafdi)
in defining a quantum version of the instanton bundle.

Finally let us recall the definition of therinfeld doubleD(g). LetD(g) = g ® g* be the
direct sum of vector spaces. Then there exists a unique Lie algebra strucifg)such
thatg andg* are Lie subalgebras and isotropic with respect to the non degenerate pairing
(X1 4 Y1, X2+ Y2) = Y1(X2) + Y2(X1).

3. Poisson sigma model

Let us start by introducing the Poisson sigma model. The model has two bosonic real
fields,X andn. X is a map from the two-dimensional worldshe&t (possibly with bound-
aries) to a Poisson manifaltt of dimensiord andy is a differential form on¥ taking values
in the pull-back byX of the cotangent bundle o¥1, i.e. a section of(*(T* M) ® T*X.

In local coordinatesX is given byd functions X*#(&) and n by d differential 1-forms
Nu(€) = Nay dE¥ (Wherew, g = 1,2 andu, v =1, ..., d). The action of the Poisson sigma
model given by the following expression:

1
S = / o [eaﬁnwaﬁX“ + Ea““(X)nwnﬁue“ﬁ] (3.)
P

wherex" is a Poisson tensor ol. The variation of the action gives rise to the following
equations of motion:

dn, + %(apa“”)nu Any =0, dX* + a*'n, = 0, (3.2
and ifoX # ¢ then we should impose the boundary condition such that
(nu8X")yz =0, (3.3)

wheren|r+3x = 1, dr. The action (3.1) is invariant under the infinitesimal gauge transfor-
mations:

3/3X“ =a""By, Spnu = _dﬁu - (3ua”p)nuﬂp7 (34)

with the parametes,, dX* e I'(X*(T*M)), wherel" denotes the space of sections, such
that the following boundary condition is satisfied:

(,BMBTX“)|32 =0. (3.5)

1 In Section Swe will discuss that sometim@écan be treated as a section of an appropriate fibre bundle.
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Now let us describe the boundary conditions which satisfy (3.3) and (3.5). Locally it is clear
that along the bounda§' in some directiorX should be taken of fixed value and in the
remaining directiong, and gauge parametgrshould be taken zero. Thus in the covariant
language the boundary condition is given by the requirement that

X:0X — DcCM, (3.6)
i.e. the image of the boundary is a submanifbl@f M and
nr=os € D(X*(N*D)), Blax € I'(X*(N*D)) (3.7)

and whereN*D is the conormal bundle db. Here we assume thaf’ has a single com-
ponent. This description of boundary conditions is very much analogous to the boundary
conditions of the open string theory known as D-branes. Hence we may borrow the string
jargon and refer to the submanifdiRlas D-brane.

Indeed as it stands the boundary conditions (3.6) and (3.7) are not invariant under the
residual gauge transformations (i.e., the gauge transformations (3.4) restricted to the bound-
ary 9X using the boundary conditions (3.6) and (3.7)). To illustrate the point let us use
the local coordinates. In the neighborhood of a paine D we choose the coordinates
X* = (X4, X") adapted to the submanifold such that in this neighborhood the subman-
ifold D is given by the conditionrX? = 0. We use the Latin lower case letter from the
beginning of alphabet for the coordinates transverse to the submafifalitl from the
middle for the coordinates along the submaniféldIn these coordinates the condition
(3.7) becomesg,, = 0 andg,, = 0. The gauge transformations restricted to the boundary
should leave the boundary conditions invariant. Namely the following should be true:

86X ox = a™ B los = a®Bplax =0, (3.8)
dpNmlax = —3n01“b77m/3b =0. (3.9)

Sincep, andy., are unrestricted along the boundary we have to imposethé, X”) = 0

(as a result of this,a??(0, X*) = 0). ThereforetN*D ¢ TD and the submanifol@® is
coisotropic with respect to the Poisson structuré/e have also to check that the remaining
gauge algebra acting on unrestricted fields closes on the boundary (at least on-shell). Indeed
using the property of coisotropy® (0, X") = 0, we obtain the (on-shell) closure

[aﬂz’ ‘Sﬂl]Xn = “nu(auaabﬂ%ﬂla) = anc(ac“abﬂ%ﬂla)a (3.10)
(82, 811120 = 8(3L»a“bﬂ2bﬂ1a)’7m’ (3.11)

where in the last equation we have used the equation of motion restricted to the boundary.

Thus we can conclude that the boundary conditions for the Poisson sigma model are
given by (3.6) and (3.7) where the submanifddis coisotropic with respect ta. The
coisotropy follows from the consideration of the gauge symmetry on the boundary. This
coincides with the results ¢@].

However we would like to bring the reader attention to a subtlety in the derivation of
the boundary conditions. In some instances it is more convenient to write the action of the
model in a form which differs from (3.1) by a boundary term. For example, for the case of
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the linear Poisson structure the action is typically written in the following form:
1-
S = / o x4 (e“*“aanﬁA + szCAnaBnﬁce“ﬁ) , (3.12)
X

whereM is a vector space’5€ , are the structure constants of a Lie algebra and the Poisson
structurea® = fAB.-XC. The action (3.12) is the standard form for the BF-theory (for
further details seSection 7. The action (3.12) differs from (3.1) by a boundary term. In
fact the action (3.12) is invariant under gauge transformations without any restriction on
the boundary. Nevertheless one can still repeat the analysis coming from the requirements
(3.8)—(3.11) and arrive at the same result. Namely, the boundary conditions should be given
by (3.6) and (3.7) an® is coisotropic submanifold aM. The restriction of the gauge
transformations on the boundary come now from the requirement that they close an algebra
and leave the boundary conditions invariant.

4. Symmetries of Poisson sigma model

In this section we consider the global symmetry associated with group acti¢h and
its generalization for the Poisson sigma model.
Let us assume that there exist an action of a Lie g@op M

¢:GxM— M. (4.1)

At the infinitesimal level this action is realized by the vector figigs= kﬁaﬂ which obey
the corresponding Lie algebgarelations:

[ka. k] = faske. (4.2)
Under the action of the groupthe fields of the model have the following transformations:
SXH = aAkZ(X), 8oy = —aAnavk};qw 4.3)

wherek), | = dukj anda” being the parameter of the transformations. The variation of
the action (3.1) under (4.3) is given by

1
58S = > / o2t P a? ngunpo(Li, ™) + f d% ePaga’ (na,ukY). (4.4)

If £i,a*’ = 0 then the transformations (4.3) are the global symmetries of the action. Thus
in this case the Poisson structurés invariant under the action @f,
a(gm) = pga(m), Vge G, Ym e M. (4.5)

For this symmetry the corresponding conserved currefitis= 1q,.k'; with the conserva-
tion law

dJA = e“ﬂanﬁA =0. (4.6)
The gauge transformations (3.4) imply the following transformationd for
8pda = —d(Buky) + Bukly ,(AX? +aP1,), 4.7)
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where the last term is proportional to the equation of motion. Hence we conclude that for
the Poisson sigma model with teinvariant Poisson structure we can construct (on-shell)
(dimg) abelian flat connections, which may, however, be dependent.

The above situation can be generalized in the following way. Let us assume that the group
G is a Poisson—Lie group withv being the corresponding Poisson-Lie tensor. Then it is
natural to consider that the actigris a Poisson action. {f is connected, at the infinitesimal
level the condition (2.6) becomes

Li,at = FO8 kiKY, (4.8)
where 7¢B 4 are the structure constants on the dual Lie algefrdefining the current

Ja = kjn# as before we can show that the equation of moti®)(together with the
property (4.8) imply

dJa + 1 7B4dc A Jp=0. (4.9)
In its turn the gauge transformations (3.4) lead to the following transformations: of
8pJa = —d(Bukly) — FEATC(Bokl) + Bukly (DX +any), (4.10)

where again the lastterm is proportional to the equations of motion. Thus ontshell, 74
can be interpreted as a flat connection of the trivial principal buBdieG*, whereG* is the
simply connected group corresponding to the dual Lie algghrkollowing the Klimcik—
Severd19] we can understand the flatness condition (4.9) as a sort of generalization of the
conservation law; we call it the Poisson—Lie symmetry. Lodatly(4.9) easilyJ = g1 dg
whereg’is a map from the worldsheét to the groupg*.

Indeed the case of invariant Poisson structure can be embedded to the Poisson-Lie
framework assuming the trivial Poisson—Lie structure u.e= 0.

5. Poisson sigma model over group manifold

In this section we consider the case when the target spaaan be identified with a
Poisson-Lie groug. The multiplicative property (2.2) of the Poisson tensdamplies that,
for instance, the left multiplication is a Poisson actiorjadn itself, see (2.6) withw = «.
We can apply the considerations of Poisson-Lie symmetry of the previous section and define
the current/4 associated to the left multiplication, i.84 = kﬁnu, whereky = kﬁaﬂ are
now the left invariant vector fields o

The importantissue now is th@;‘} isinverse okﬁ and the following two sets of variables
are equivalent:

(XH, Nws ,3/1) — (XM» Ja = kﬁmu Ba = _kZ,BM) (5-1)
The equations of motion in the new variablés (/) read
1-~
dx# —s4Jy =0,  dJs+ EfCBAJC AJp=0 (5.2)
and the on-shell gauge transformations are
SpXM = s By, (5.3)
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8pJa = dBa + FCBaJCBE, (5.4)

wheres* = —a*’o?'. One can easily check thEgs. (5.2)and the transformations (5.3)
and (5.4) areon-shell completely equivaletd Egs. (3.2)and the transformations (3.4)
taking into account the definition (5.1).

The vector fieldss? = s4#9, = w2a'"d, = to? are the dressing vector fields de-
scribed inSection 2 they satisfy (2.4). The dressing action is a Poisson action and thus
we have

,CSA()[MU = fCBASCMSBV, (5.5)

which can be explicitly checked. We can now apply the discussion of the Poisson—Lie
symmetry fromSection 4 this time with respect to the Poisson action given by the dressing
action ofG* defined bys#. We then introduce the currejit = s4#5,,; as a consequence

of the Poisson symmetry of the dressing action, it satisfies the flat condition

dj* + 3 /8¢ P A J€ =0 (5.6)
and transforms under the on-shell gauge symmetries as follows:
5pj" = dB* + fes® jCBP, (5.7)

wherep? = —pB, s, However itis interesting to note that on-shgl = —w# dX*. Now
if we adopt this as the definition gf* the condition (5.6) is satisfied trivially and the gauge
transformations (5.7) of* are off-shell.

The infinitesimal on-shell gauge transformations (5.3) and (5.4) can be easily integrated.
In fact we know that the invariant form@1(G)™ close a finite-dimensional subalgebra
of 21(G). If we limit the gauge transformations : ¥ — £21(G)™ then the algebra of
infinitesimal transformations is jug{ X, g*) = {8 : ¥ — g*} and can be integrated to the
usual gauge groug (X, G*) = {y : ¥ — G*}. If the Poisson-Lie grou@ is complete, i.e.
the dressing vector fields are complete, then the gauge group acts on the sokitighs (
of equation of motion as a dressing transformationXoand as usual transformation of
connections od.

We are going now to discuss the boundary conditions in the new variables. Now we
specialize to the group case the discussion of the boundary conditions givection For
the model on a generic Poisson manifold. There we saw that we have to requiXerthps
the boundarnyX’ in a coisotropic submanifol® c G, i.e. X : 0¥ — D. The boundary
term (3.3) can be written as follows:

128Xz = (k) 8X)oz = —(Jacji)laz = 0. (5.8)
In terms of the current3 andj, the boundary conditions can be imposed as follows:
Jirsr e (D) @ht c QYD) @9, jirre 2(D)ehc2i(D) g,
(5.9)
such that
(h,h*) =0, (5.10)
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where(, ) is the natural pairing betwegrandg* (dimh + dimh+ = dimg). In order to let
the gauge transformations (5.4) restricted to the boungl8rglose an algebra we must ask
thath' c g* andh c g are both subalgebras. L&t" ¢ G* andH C G be the connected
subgroups whose Lie algebras are respectivélandh; we know fromSection 2hat this
condition is equivalent to saying th&¢ ¢ G andH+ c G* are coisotropic subgroups and
are complementary duals of each other. Finally, the underlying submadifacboth #
and#* invariant and coisotropic.

To clarify the discussion we can analyze the boundary condition in local coordinates. As
it has been discussed®&ection 3n local coordinates the boundary conditions are given by

Nemlax =0, n=1...,dimD, Xa|32=0, a=dmD+1,...,dimG.
(5.11)

According to (5.8)—(5.10) we want to impose the following boundary conditions on the
currents:

Jealax =0, A=1,...,dimh, jAax =0, A=dimh+1,...,dimg.
(5.12)

Together the conditions (5.11) and (5.12) imply the following conditions on the invariant
vector fieldsk4 and the invariant one forms?

4p=0, A=1,...,dmh  o?lp=0A=dimh+1,...,dimg,
(5.13)

where we have used the fact th&tandn ., are unrestricted on the boundary. In the covariant
language the condition (5.13) becomes

ka)dmPp c TD, {04, 1p C N*D. (5.14)

Since we are dealing with a group manifold the vector fi¢idg are linearly independent
at each point. Thus due to this fact and the property (5.14) the marifbids dimension
equal to dimh. The set of vector fieIdScA}‘j'Q{‘b form a basis in the tangent space of the
manifold D and therefore must be in involution. We can conclude tHata subalgebra. In
its turn the coisotropy db implies that

. B
ka)§™p c D, {sY)\0, 1 lp C T, (5.15)

with s4 being the dressing vector fields. As it was state8éation Xhe coisotropy oD is
essential to guarantee that the gauge symmetry restricted to the boundary is consistent, i.e.
it leaves the boundary conditions invariant and it closes to an algebra (at least on-shell) on
the boundary.

Now the new point is that in the case of a Poisson—Lie group, the model can be written
in new variables and it makes sense to consider the on-shell gauge transformations as maps
from X to the dual grougi*. Therefore in this context it is natural to require that the
symmetry on the boundary have the same nature as in the bulk. Namely we have to require
thath' forms a subalgebra a@f* and thus the gauge transformations (5.4) have a natural
restriction to the boundary. In this cadandj (on-shell) transform as gauge connections
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both in the bulk and on the boundary and their algebra of gauge transformations has field-
independent structure constants. Once that we askthatlh are Lie subalgebras, then
the submanifold is invariant under the action 6{ and#/* and the vectors (5.15) are the
fundamental vector fields of these actions. It is important to stress that not any subgroup
# of G has its dual{* c G* in the above sense. Only the coisotropic subgroups (see the
definition inSection 2 ‘H would satisfy this requirement.

We finally motivated the following definition.

Definition 1. Let £ be a coisotropic subgroup 6t An admissible &, #1)-brane is a
coisotropic submanifol® c G such that it is invariant after the left action &f C G and
the dressing transformations &f-. Moreover diniD = dim .

A natural candidate to be af{( #*)-brane is the subgrouft itself. However there
exists a wider class of such branes that satisfy the previous requirements. For example, one
can see the discussion of admissible branes in the context of BF-theory.

Example 2. If # = G thenH' = {e} and the only admissible branefis= G. In this case
the boundary conditions simply state tha}s = 0, without any restriction oiX, i.e. we
recover the Cattaneo and Felder boundary conditions f&m

The other extreme case is wheh= {e} andH+ = G*; then an admissible brane is a
fixed pointgg of the dressing transformations @f, i.e. a degenerate point. In this case the
boundary conditions amount to fixing = go on the boundary without any restriction én

6. Moduli space of solutions: group case

In this section we want to describe the moduli space of gauge inequivalent solutions
of the equations of motion for the Poisson sigma model on a Poisson-Lie groie
assume that the dressing vector fields are complete, s@'tlaats ong by the left dressing
transformations. In this case the gauge transformations can be integrated to finite transfor-
mations and therefore the moduli space is well-defined. We consider the model over an
arbitrary Riemann surfac& either with a boundary or without a boundary. In the case
of non-empty boundary the boundary conditions should be incorporated into the task as
discussed irsection 51n particular our goal is to relate the moduli space to the structure of
symplectic leaves af. Namely we will describe it as certain union of the moduli spaces of
flat connections of those subgroupsdifwhich are stability subgroups of the symplectic
leaves.

Before going into the details of the present model we need to briefly recall some basic
facts on flat connections.

6.1. Moduli spaces of flat connections
Starting from the Atiyah—Bott work3] the moduli space of flat connections over the

Riemann surfaces has been extensively studied in the mathematical and physical literature.
The typical description of the moduli space of flétconnections ove, with 7 being a
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Lie group, is Homf1(X), H)/Ad #H, which in the case of two-dimensional surfaces is a
symplectic space. We are mainly interested to focus on the flat structures that lie behind
this description. This approach has been advocatfijrand, since it will be useful in the
following, we are going to sketch it. In this section we consider that all the maps between
smooth manifolds are smooth; for equivalence between two pringigalindles overX
we mean a bundle morphism which is a diffeomorphism on the total space and induces the
identity on X’ and on.

Let P = P(X, H) be a flat principal bundle oveE with fibre #, i.e. a bundle that
admits a flat connection. It is always possible to choose an open coyéfindor X~ and
the trivialization forP such that the transition functiorisg are constant. In fact let €
Hom(r1(X), H) be the map that associates to each cycle the holonomy around it (defined
up to conjugation). It can be shown this equivalent ta> X, H, whereX is the universal
covering of ¥, and that> x , H admits a canonical locally constant trivialization, §&¥|
for details. Letrg be the transition functions in this trivialization Bf we can describe all
flat connections il asJ = {—dy, ¥, 1}, with v, : U, — H. The compatibility conditions
imply that

hap Qps hpe = ey, (6.1)

onU, N Ug. We can associate to the collection{gf,} an equivalent bundl@(x, %) with
transition functionshéﬁ = Y3 thagp 0N Uy N Ug Which due to (6.1) satisfy

Vo i)yt = —dVatry thep + hap Dyt =0 (6.2)

and thereforézg are constants and define a new locally constant trivializatidh bét us
identifyg;lhiﬂgﬁ andhgﬂ forallconstang, € H and denote the corresponding equivalence
class h’/]. We denote byF( X, H, P)the moduli space of gauge inequivalent flat connections
on P. Let us denote withf] the class ofl in (X, H, P). The gauge transformations are
defined as automorphisms®efi.e.y € Aut(P) is defined byy = {yq|yv« : Uy — H} such
that yolas = hagyg ON Uy N Ug. Theny(J) = {—dyl (v2) ™1} with ¥ = y¥e. Since
hgfg’) = hj, we get a well defined map that send$ip [/2/].

Let us suppose that are locally constant transition functions that define a bundle
P(x, H) equivalent toP, then it exists{y, : Uy — H} such thathes = ¥ thapiis. It

isAthen clear thai” = {—dl//awa_l} is a flat connection i? and that the map that sentlin
J" depends only or‘le]. Every class of flat connectiong]in P can then be represented by
the class of locally constant transition functiong]. In other words the spacg(X, H, P)

can be equivalently defined as follows:
F(Z, H, P) = {hep : Uy NUg — Hlhaphg, = hey, dhgs =0}/ ~, (6.3)

where we consider only those constags which define the bundI equivalent td® while
the equivalence- is defined a#g ~ s;lhaﬂsﬂ, for a constant, € H. We refer tq17] for
the interpretation of/{] in the Cech cohomology of the sheaf of locally constant sections
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on Ad P, where AdP = P x¢ G. Finally we can define the space

Az H) = Az H. P). (6.4)
(7]

whereP = P(X, H) is arepresentative in the clas?][of equivalent bundles and the union
runs over all these classes.

Now let us try to apply the same logic to the case of Riemann surfaces with boundary.
For the sake of clarity let us assume that the boundanhas a single component which
is homeomorphic ts?. Let K be a subgroup o, P(X, K) be ak-bundle oven X and
P(X, H) be anH-bundle overX'. We require to exist a bundle morphism

P(OX, K) - P(Z,H), (6.5)

which implies the injection8 > — X andK — #. Let us choose a good open covering
{Uy} of X such thafV,, = U, N 9% # ¥} is a covering obX. We assume that there exists
such trivialization for the flat bundI@(X, ) such that the bundle map (6.5) is realized
locally as the injection

Vo X K — Uy x H. (6.6)

This means that it are the transition functions fé¥in this trivialization therglsx € K
define the transition functions fa(d X, ). We denote all these data &¢6X, H, K).

There is a natural notion of equivalence of bundles with such boundary conditions. We
say thatP(X, H, K) is equivalent toP(X, H, K) if there exist maps, : Uy — H and
&xlv, € Ksuch thahaﬁ =&, 1haﬂ§,g, wherehg (resp ]’laﬂ) are the transition functions for
P (resp.P). This is equivalent to say that the following diagram is commutative

PO,K) — P(S,H)

! )
P(O%,K) — P(3,H) ., (6.7)

where the vertical arrows denote the standard equivalence of bundles defiggdig
Ealox-

We are going to define flat connections X, H, IC). Namely we consider flat con-
nectionsJ in P(X, H) whose restriction on the boundady' reduces to connections over
P(0X, K). A gauge transformation is an automorphismR{X, H, K), i.e. it is defined
asy = {ValVe : Us = H, valv, € K} such thatyyheg = hegyp 0N Uy N Up. Now it is a
straightforward exercise to generalize the description of flat connections with prescribed
boundary conditions in terms of the flat structures described in (6.5). In the fixed trivializa-
tion of (6.5) we can describe all flat connections/as {—dwawgl}, with ¢y, : Uy — H
andy, |y, € K. We can construct an equivalent bundiex, A, K) with the constant tran-
sition functionshé/3 = wglha,gw,g. These transition functions define the following space:

F(Z,H, K, P) = {hag : Uy N Up — Hlhaghpy = hay,
dhep = 0, haglyz € K}/ ~, (6.8)

where we consider only those constéag which define bundle®(Z, #, K) equivalent
to P(X, H, K) according to (6.7), while the equivalenceis defined agi,g ~ s;lhaﬂs5,
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for constants, € ‘H such thatsy|y, € K. In analogy with the previous discussion for the
case without boundary one can show that two gauge equivalent flat connections on (6.5)
define the same element i X, H, KC, P). Also we can go in the opposite direction: an
elementfzaﬁ of F(X,H, K, P) defines a flat bundl(X, 7, K) which is equivalent to

P(X, H, K), i.e. there existyy : Uy — H, Y¥qlv, € K} such tha’fza,g = zp(;lhaﬂxpﬂ. Then

one can construct the flat connectibr= {—dwalp(;l}. ThusH X, H, K, P)is the space of
gauge inequivalent flat connections 80X, #, ). Finally we can define the space

FEMH.K) = AZ.H.K, P), (6.9)
[P]

whereP = P(X, H, K)is arepresentative of the clagy[of equivalent bundle® (X, H, K)
and the union is over all these classes.

In the next two subsections we will use this description of flat connections. This de-
scription is a useful tool to deal with solutions that correspond to topologically non-trivial
bundles. In fact, even assuming that the grgtips connected and simply connected we
still have to consider stability subgroups of symplectic leaves which can be not simply
connected and therefore also admit non-trivial principal bundles.

6.2. Riemann surfaces without boundaries

In this subsection we consider a Riemann surfaceithout boundary, i.edX = . We
consider the case whérandG* are connected and simply connected groups. In this situation
any principal bundle with basE and fiberG* is equivalent to the trivial one; x G*. The
group of gauge transformations (8 X, G*) = {y : ¥ — G*}. Let us considex x G as
the fibre bundle associated to the dressing actigff @n G. In the linear case it is a vector
bundle, inthe general case itis just a fibre bundle. Thus the relevant figld¥ ¢an then be
described as a connectidon the principal bundl& x G* and as a sectioki(€) = (&, X(£))
of the associated fiber bundig x G. The infinitesimal transformations defined in (5.3) and
(5.4) are integrated to the action 6%, G*) on the solutionsX, J). We then define the
main object of our study:

{Solutions of (52)}
G(Z, 6%

If (X, J) is a solution of equations of (5.2) let us indicate witl( [(/)] the corresponding
element inM (X, G).

It is easy to find the local solution of (5.2). Let us choose some open couvérirjgof
X. Then sincdl is flat, we can always fing,, : U, — G* such that/ = {—dlﬂoﬂ/fa_l} and
moreover there existy € G such thatX(§) = {¥«(£)(xg)} on Uy, whereyr, acts onxg by
means of the dressing transformation. Since we deal with the trivial bundle there are the
following gluing conditions:

Ayt =dypyst.  Yal®)(§) = vaE)h) on Ua N Up. (6.12)

Since the dressing action preserves the symplectic leaggsa can conclude thafj and
X (&) stay inside the same symplectic leaffor the general statement sAppendix A).
Let us fix a pointxg € S. Since the dressing action is transitive Srwe can always

M(Z,6) = (6.10)
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find s* € G* such thateg = s%(xo). If we defineg, = ¥, o s* then X(§) = {¢«(x0)} and

J = {—d¢>a¢>;1}, i.e. due to (6.11) in the clas&{] describingd we can choose a rep-
resentativehiizjj = ¢ 5 € H(s.xg), the stabilizer subgroup ofp. If we changes® in
s9x with x* € Hs,x) We getx,'hl,xg. So we have defined a mapping that sends
(X, )] to [%] € F(Z, H(s.xp)): this statement is equivalent to saying tdateduces

to an s ,)-connection. Next we show that the maj, [/] — [2%-/] is injective. In
fact suppose thatX = V4(x0), J = —d¥e¥; 1) and ¢ = pu(xo), J' = —dpg; ') are
mapped to the same flat connectidn]. This means that there exists € H(s,x,) such
that v, Yy = x;1g, 1ppxp. It is then easy to verify thaX = y(Y) andJ = y(J') with

Y = VaXy Yot = Vpxy eyt

Let [ilaf}] describe a flatH s «,)-connection living in the bundle defined by constant
hqg; this means that there exigt, : Uy, — H(s.xp) SUCh thatfza,g = ¢;lhaﬁ¢ﬂ. Obviously
[fzo,,g] defines also a flag*-connection, that, being* simply connected, lives in a bundle
equivalent toX x G*. Then there existg, : U, — G* such thati,g = wglw,g andJ =
{(—d(Wada) Vada) 1} @NAX (1) = Yua(£)(x0) is a solution of (5.2).

The space of inequivalent solutionX,(/), such thatX lives in S, is in one to one
correspondence with the moduli space of fléfs ) connections on¥ (including the
reducible ones!). If{s,.,) is not a simply connected subgroupdfthen we will have to
take into account all the inequivalent bundR{s, H s, x,)) and we will get the whole space

F(Z Hs.xg) = | AZ Hisxg): P). (6.12)
[P]

In the case wheft{(s o) is simply connected then every principal bundle is equivalent to
the trivial one and the space (6.12) is just the space of the flat connectiaBsdd (s, ).
In general one can verify that it is possible to find a gauge suchXhatxg andJ is an
H(s.x0)-CONNection form if and only if thé{(s x,)-bundle defined bﬁ;ﬂéj is trivial. In fact,
with the same notations than before féf, (7), if there existsf, : Uy — H(s,x) Such that
hay' = f7 fp theny = fu¢t = fp¢;" extends to alls’ and defines the desired gauge
transformation. As an example of discussion of the flat connections on the two-dimensional
torus with a non-simply connected group we refer the readg@aép

Since dressing transformations preserve symplectic leaves, gauge transformations cannot
mix solutions living in different leaves. Therefore one can conclude that the whole moduli
space is the union over symplectic leaed the spaces described in (6.12). All the previous
discussion can be summarized in the following proposition.

Proposition 3. Let Lg be the space of symplectic leavegiand p : M(X, G) — Lg be
the map that associates &, J] the symplectic leaf where X lives. Théor eachS € Lg,
fix xg € S, we have that

pHS) = A2, Hsxg)):

where? s ;) C G* is the stability subgroup ofo.
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This shows that the spadé(X, G) is a topological space with the topology induced from
the space of symplectic leavég which is equipped with the quotient topology. However
we should admit that this topology ad (X, G) is too rough. We feel that the present level
of discussion is too general and extra conditions should be introduced in order to define a
finer topology onM (X, G).

Remark 4. The analysis of equations of motion can be done in an alternative and very
geometrical way. The first equation of (5.2) means ¥defines a parallel sectioki(u) =

(u, X(u)) with respect to the connectiah In fact letw, (u, y) € (T, £ & T,;G) ® g* be
the connection form defined kyand letH, ,) = {ve T, X & T,,G*, (w;, v) = O} be the
horizontal space. Let € G definethe mag : X x G* — X x G, g(u, y) = (u, y(g)) and

let A, ¢ = 8&+(H(,¢)) define the horizontal space in the associated buidle G. It is
straightforward to verify that the first of (5.2) is equivalentX@(7X) c H. Moreover the
first of (5.2) implies also thaX (X) is contained in a single symplectic lesit= G*/H s, xq)
(seeAppendix A), for some arbitraryg € S. ThenX defines a section in the associated
fibre bundleX x G*/H s, x,)- If now we apply Proposition 7.4 ¢20] we can conclude that
X is parallel if and only if) reduces to a connection in ths o)-bundlePx (2, H(s,xy)) =
{(u, y) € ¥ x G*|X(u) = y(x0)}. Remark thaPy is the pullback by of the homogeneous
bundleG* — g*/’H(g,xo).

Example 5. Let us consider the moduli space over the two-dimensional sifeta this

case all flat connections are equivalent to the trivial one whatever is the gfgup) and
therefore the moduli space of solutions coincides with the space of the symplectic leaves
for G, i.e. M(S?, G) = Lg. In general this space can be even non-Hausdorf.

6.3. Riemann surfaces with boundaries

Now we turn to the description of the moduli space of solutions over a Riemann surface
with boundary. For the sake of clarity we assume that the boundary has a single component,
which we denotdX'. However the generalization for the case with more than one component
is straightforward.

In the previous subsection we have solved problem in the bulk and now we have to
incorporate the boundary conditions. Let us remind the discussion of boundary conditions
from Section 5We have argued that the appropriate conditions are given by a coisotropic
submanifoldD which is invariant under coisotropic subgroulisc G andH" c G*. For
the fields the following conditions are imposed

X:9¥ — D, Jlos € 2Y3X) @ ht, (6.13)

whereh' is the Lie algebra of the subgrodp™ c G*. On the boundary the infinitesimal
gauge transformations defined By= 4T are living inhL. Therefore we can interpret
J]35 as a connection for the trivig{ principal bundle ovef > ~ S*.

We assume thag* is simply connected an®{* is connected. We consider the trivial
bundles with the natural injection

X x Ht — ¥ x G*. (6.14)
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Accordingly the gauge group G(Z, G*, H) = {y : £ — G*ylsx € H*}. Following the
discussion irBection 6.1 is interpreted as a connection on (6.14) ahid a section of the
associated bundIE x G that restricts on the boundary to a sectior®&f x D (which can
be seen as associatedtb x 7). We define the moduli space of the solutions

{Solutions of (52), X : 0¥ — D, J|yx € 2Y0X) ® ht}

M(Z.6. D) = G(Z, G, 1Y)

(6.15)

which we describe below.

In the bulk the analysis of (5.2) is exactly the same as in previous subsectiotfithe
lives in a symplectic leaf and the connectiod reduces to the stability subgrodfys, ).
for somexg € S. The boundary conditions forcé|;s to live in S N D. Therefore we have
to consider only those symplectic leaves such &atD # @. Moreover the first equation
of (5.2) has a well defined restriction to the boundagy,

(X" — s J4)lax = 0, (6.16)

wheret parameterizes the boundary. Sing,s lives in h* then X|yx lies entirely in

a single orbitO(S, H*) c S of H* on D. Since gauge transformations are restricted on
the boundary t@{*, each point in the moduli space of solutions identifies in this way an
H---orbitin D. Let us chooseg € O(S, H1) C S; thenO(S, HY) = HL/(HE N Hsxp)):
With the same mechanism as in the bulk, on the boundasyreduces to ag{" N H(S,x0)"
connection.

Let us spell out more details of this construction. We introduce the local trivializa-
tion of J = {—dlﬂaw,;l}, where v, : Uy, — G*. As a consequence of boundary condi-
tions, v, should be chosen such thég|yx € . Then we have thak (u) = Va(xg),
so thatxg stay in O(S, H1) for « such thatV, = U, N X # @. Let us definesg € G*
such thatxy = sg(xo). By construction, we can choosg < H* for all « such that
Vo # 0. Let us defingp, = v,s7: itis clear thatg,|ss € H* for all @ € Z. We have that
hféj = ¢;1¢,g € H(S,xq) andh;éjlax € H(S,x) N H*. We get a map that sendsX[(J)]
to [h*7] € F(Z, H(s.xg)» Hs.xo) N HT), where this space has been defined in (6.9). It is
easy to verify that this map is injective.

Let us discuss now the inverse map. Ueid] € F(X, H(s,xo)> H(S.x0) N H*, P), where
P denotes a bundle defined as in (6.5). Sig¢ds simply connected, thé* bundle on
X defined byh.g is equivalent to the trivial one, i.e. there exists : Uy — G* such
thathes = ¥, 15. Analogously sincé{! is connected thé{--bundle on the boundary
is trivial so that there existg, : V, — H* such thathglox = ¢;1¢,3. The mapy, =
Valasdyt: Vo — G coincides onV, N Vg so that it can be extended jo: ST — G*.
This means that" = —dwawgl is aG*-connection onX' x G* whose restriction to the
boundary is gauge equivalent to= —dg,¢; L, i.e. J"|sx = y(A). SinceG* is simply
connected every : ST — G* can be extended th: ¥ — G*, such thafy|;s = y. Then
J=7YIM = —dF W) W)L X = ¥ e (xo) is a solution of (5.2) satisfying
boundary conditions.
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We have shown thatthe space of inequivalent solutions satisfying the boundary conditions
(6.13) for a fixed orbitO(S, %) c D, is in one to one correspondence with the space of
Hs.xo) flat connections satisfying(s, «,) N > boundary conditions, i.e.

F(Z, Hs.xg) His.o) N HT) = | F(Z His.x0) Hisxg) VHE, P), (6.17)
(7]

where again P] runs over the inequivalent bundleg¥ X, Hs, x), H(S,x) N H1). Since
dressing transformations preserve symplectic leaveg&ndrbits inD, the whole moduli
space of solutions will be given by the union over the differgfit-orbits in D. Let us
summarize this fact in the following proposition.

Proposition 6. LetLp be the space @+ -orbitsinsideDandp : M(X, G, H*+, D) — Lp
be the map that associates[td, J] the orbit whereX| . lives. Then for eacld(S, HY) e
Lp fixxg € O(S, H1). We have that

pHOS, HY)) = F(Z, Hsxo) Hisxo) NHD).

with H s o) being the stability subgroup ab.

Example 7. Let us consider the model defined on the disk-or the diskD all flat con-
nections are gauge equivalent to the trivial one and therefore the moduli space of solutions
coincides with the space 6{* orbit of D, i.e. M(D, G, H*, D) = Lp. In fact in[9] the
authors show thatp is a (possibly singular) Poisson manifold and the quantization of the
model gives a deformation quantization of the algebra of functions over this moduli space.

7. BF-theory

In this section we would like to describe a concrete example and illustrate the general
results for the moduli spaces given$ection 6 We consider here the case of the linear
Poisson structure which is usually called BF-theory. The BF-theory is known for 15 years
[15,4] and is relatively well studied. At the same time it is one of the simplest non-trivial
examples of the Poisson sigma model.

First we briefly remind the description of the BF-model to show that it is really a Poisson
sigma model on a Poisson-Lie group. The model is defined on a vector Gptiae we
consider as the abelian group of translations. We introduce on it the linear Poisson structure
aBC = 7BC, xA where 8¢, are the structure constants for some gra@tipsuch that
dim G* = dimG. The grous* acts org by the coadjoint action and thgcan be identified
with the dual space of the Lie algebra@f. The space with the Poisson structure*?
is a Poisson—Lie group and it is duald@® equipped with the trivial Poisson—Lie structure.
The dressing vector fields are the fundamental vector fields of the coadjoint acGiboof
G so that they are complete by construction. The model is given by the following action:

1~
S = / x4 <d77A + EfBCA’?B A nc) , (7.1)
b
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wheren is a connection on the trivial bundlE x G* and X : ¥ — G is interpreted as a
section of the vector bundI® x G associated to the coadjoint action. As it was pointed
out at the end oBection 3 (7.} differs from the action of the Poisson sigma model by

a boundary term. However this fact does not affect the boundary conditions. Under the
gauge symmetries (3.4 transforms as a section &f x G andn as aG* connection. The
equations of motions for (7.1) imply thatis a flatG* connection an is a covariantly
constant section of the vector bundle. In particulareeds not to be redefined, ire= J

in (5.1).

The symplectic leaves of are then the coadjoint orbits gf and one can in principle
apply the results of orbit method to get informations about the moduli space of solutions
M(X, G) (se€[18]). Let us assume for instance tlgatis a compact (connected and simply
connected) group. The stability subgroup of each coadjoint érista subgroup s, o)
which is contained in a finite number of conjugacy classes of subgroufs bsf particular
the stability subgroup for the orbits of maximal dimension can be chosen as a maximal
abelian connected subgrodpof G* and for the generic orbit it can be chosen such that
T C H(s,xg) C G*. There is afinite number of typical fibers of the projection map described
in Proposition 3and the fibers over the orbits of maximal dimension are all isomorphic.

Example 8. Let us be more concrete and consider the very simple case@henSU(2)

and X is closed. We refer to the notations Bfoposition 3HereG = R3 can be seen as

the additive group of translations and the dressing transformations are just rotaties on

A coadjoint orbit is identified by the equatioti*n,zX? = p, wheren 5 is the Cartan-
Killing metric andp > 0. The spacé ¢ of symplectic leaves is theéR'. The case = Oisa
degenerate point and its stability subgroup is the wlbl€2): sop~1(0) = F(Z, SU(2)). If

o > 0the orbit is a sphere and the stability subgrou(s), so thatp~1(p) = FA(Z, U(1)).
SinceU(1) is not simply connected group, we have to take into account also the contribution
of topologically non-trivialU(1) bundles. The solutions corresponding to the trizigl)
bundle can be always put in the form whéfe= xg andJ is a flatU(1) connection form.

Nextwe can turn to the discussion of the BF-theory on a surface with boundary. Following
the logic of Section 5the boundary conditions of the model are described by admissible
branes, i.e. submanifoldd of G satisfying the properties definition ??. Let us choose
a subgroupit c G* with Lie algebrah=: it is always coisotropic iG* since ong* the
Poisson structure is trivial. The complementary dual algbhsadefined as the annihilator
of h'. The corresponding grouid can be identified with itself. We can conclude théi is
a vector subspace Gfwhich is coisotropic and invariant under the coadjoint actiof/6f
We can construct other admissible branes by considering the fixed points of the coadjoint
action of . Let go be a fixed point fof{* thenD = H + go is still an admissible brane.

In more explicit terms let us choose coordinal$ = (X“, X") on G such thatX¢ = 0
parameterize®{. ThenD is the hyperplan&“ = gg; the coisotropy o> follows:

aab(Xa — 88, sz) — }'abnxn + }abcgf) =0, (72)

where f%, = 0 sinceh' is a subalgebra anf® g5 = 0 sincego is H' invariant. It is
clear also that these are the only admissiBle%(") branes.
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Example 9. Letus describe these branes more explicitly in the caS& (&)-BF-theory. We
continue the discussion startecirample 9and we refer now to the notation Bfoposition
6. Let us choosé{" as the diagonal/(1) so thatH{ = R? = {(x, y, z = 0)}. Admissible
branes are the®(zo) = {(x, y, z)|z = zo} and the spacép,) of U(1)-orbits onD(zo) is
againR™, wherep € R™ corresponds to the circle of radiggnd center (00, zo) in D(z0).

If o = 0 then the orbit is made by only a poirg = (0, 0, zo) and the stability subgroup
H(x,5) COINcides with#+, i.e. p~1(0) is just the moduli space of fldf(1) connections
over X. If p > 0 thenH (x5 N H+ = ¢ and we get thap—1(p) is the moduli space of flat
U(1) connections oveE such that/ = 0 on the boundary.

8. Duality

In this section we want to briefly discuss the intriguing duality properties of the model.
Itis natural to expect that there may exist some relation between the Poisson sigma models
defined over the Poisson—Lie grogpand its dualG*. The nature of this section is quite
speculative, since we cannot offer any definitive picture. Nevertheless we think that it is
worthwhile to present the following observations on the problem.

Let us start by recalling fronSection 5the relevant properties of the model. We have
pointed out that the equations of motion of the Poisson sigma model over the Poisson—Lie
groupg can be rewritten as follows:

1-
dJa + > FEBLIe AT =0, (8.1)
dx* — sA*(X)J, = 0. (8.2)
Egs. (8.1) and (8.24re invariant under the following gauge transformations:
3/3X’L = SA#,BA, (8.3)
8pJa =dBa + FCBadcBp. (8.4)

In Section 5we already drew attention to the fact that there exists the “dual” cugrent
which satisfies the equation:

1
dj* + EchAjB A J€ =0, (8.5)

which can be interpreted as a Bianchi identty. (8.5)is invariant under the gauge trans-
formations:

8pj* = dB* + feu jCBE. (8.6)

The Poisson sigma model ov@radmits a particularly symmetric formulation with the
model defined og7*. The boundary conditions are formulated in a quite dual way, see all
the discussion obection 5 Nevertheless we have to stress that the two models do not have
equivalent moduli spaces of solutions. For example, let us consider the two models defined
on the disk. Let us choose the boundary conditions by fixing the brane # &&; and
H' c G*, whereH andH are complementary dual coisotropic subgroups. As we have
argued inExample 7the corresponding moduli spaces are the spagg¢'ebrbits on# and
the space of{-orbits on?{*. These two spaces are not related in any obvious way. There
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is an extreme situation whel = {e} andH = G* and the moduli spaces are completely
different. Therefore we conclude that we cannot construct a map between the solutions of
two models taking into account the gauge equivalence. However this observation does not
exclude a more subtle interpretation of the duality for these models.

We should keep in mind that the two curresisandj* (as well as their gauge parameters
B4 andB?) are notindependentin our model. Let us explore the relations between these two
currents and the corresponding gauge transformations. Using the definitiorSdaion 5
we know that the currenjsindJ are related to each other as folloys+ a)/j‘sB“(X)JB =0
and correspondingly the gauge parametergas sA“a)f(X)ﬂB = 0. The main goal is to
exclude completelyX from our consideration and to formulate a new model entirely in
terms of the current3andj and symmetric in the exchange @andg*.

Using the above relations between the currents we can show that the following properties
are trivially satisfied:

BaB* =0, (8.7)
JaBt + jBa =0, (8.8)
JAA* T4 =0, (8.9)

where in the last equation we have introduced a metrigZon order to have a symmetric
pairing of one forms. We get a perfectly dual system of equations for the two curjes}s (
defined by the flatness conditions (8.1) and (8.5) together with (8.9); the gauge transforma-
tions (8, B) defined by (8.4) and (8.6) must satisfy (8.7)—(8.8). In what follows we refer to
this system as the(J)-system. By construction the Poisson sigma models @esrd over

G* can be embedded into this system of equations. Howeverthig$ystem admits more
solutions than the original models grand onG*.

Let us analyze thej(J) system in term of the Drinfeld doubl®(g) = g & g*. The two
currents/, and j4 naturally define7 = j + J € 2'¥ ® D(g) and the gauge transforma-
tions (B4, B*) defineB: ¥ — D(g). Introducing the natural paring, ) on D(g) (where
for the forms we can use the Hodge star operation in order to make it symmetric) we can
write the conditions (8.7)—(8.9) as follows:

(B, B) =0, (J.B) =0, (J,J)=0. (8.10)

These conditions are satisfied wh#and5 are elements dfC D(g), wherd is a maximally
isotropic subspace with respect to the paring on the double.

Let us describe some possible solutions of the/) system. Let us consider a map
r:g* — gsuchthar4® = —rB4 or equivalently € g A g. If we define the currents and
the gauge parameters & = rB4 Jz 4 = rBA B, then the isotropy conditions (8.10) are
solved automatically. In this case the maximally isotropic sdaisedefined as follows
| = {r(¢) + |t € g*}. The flatness condition (8.1) forimplies the flatness condition (8.5)
forjif and only if r : g* — g s a Lie algebra homomorphism. Under the same condition
also the gauge transformations are mapped appropriatelysatlagrangian subalgebra of
the double. For example, one can verify that this situation can be realizedgbbres the
classical Yang Baxter equation and the grglipas the corresponding triangular Poisson—
Lie structure.
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Another possible solutions of thg, (/)-system is given whepis a flat#-connection
and J is a flat H*-connection, wheré{ and H* are complementary dual coisotropic
subgroups. Again, if we denote withandh- the corresponding subalgebras; h @ h*
is a Lagrangian subalgebrabfg).

It is tempting to conjecture that a generic solution of thie/j-system can be related
to Lagrangian subalgebraf the double. The solutions defined by the Poisson sigma
model are associated to a fixed symplectic leaf; by the Drinfeld theorem we can associate to
every Poisson homogeneous space (and so to every symplectic leaf) an orbit of Lagrangian
subalgebras of the doub&2].

9. Summary and discussion

In this paper we have presented the analysis of the classical Poisson sigma model defined
over the Poisson—Lie grou@. We have reformulated the on-shell Poisson sigma model
over G in terms of theG* flat connectionsl and the parallel sections of the associated
fibre bundleX x G. This reformulation suggests the natural description of the boundary
conditions which are specified by the coisotropic subgroups. Using this description we are
able to describe the moduli space of the model for the generic compact Riemann surface both
without and with a boundary. We show that the moduli space is the union of the appropriate
moduli spaces of the flat connections. At the end of the paper we offer our thoughts on the
possible relation between the models oyeandG* and also on the other possible models
defined over the whole Drinfeld double.

There are some observations which the presented analysis suggests, but which we have
not pursued further in the present paper. One of striking properties is that once we discuss
the system at the level of the equations of motions we are not confined to two-dimensional
world sheet¥. For example, the equatiofi3.2) are defined in any dimensions and they are
invariant under the transformations (3.4) provided thé&t a Poisson structure. In fact the
integrability conditions of (3.2) would requiketo be a Poisson structure. This argument
goes in the spirit of the construction used in the higher spin theories (e.g., see the discussion
in Section 3 0f29]). Also we believe that the discussion of the moduli spac&siction 6
can be generalized to arbitrary dimensions. Therefore the Poisson sigma model is defined
in any dimensions. In more than two dimensions in order to write the action we have to
introduce extra fields (the Lagrangian multipliers for the equations of motion). However
if we quantize the system and look at its relevance to the deformation quantization then
dim(X) = 2.

Another striking point is the following observation. [@4] it is shown that ifG is a
compact semisimple Lie group equipped with the standard Poisson—Lie structure then the
Poisson structure og* is globally diffeomorphic to the linear structure on L@&t. It
suggests that the BF-theory is related to the model ¥evith the standard Poisson—Lie
structure. However at present moment it is just a speculation.

As it was shown ir[8] the Poisson sigma model over the disk leads to the Kontsevich
star product. When the target is a Poisson—Lie group the theory on the disk should be
related to quantum groups in a certain way. The generic boundary condition on the disk is
characterized by a coisotropic subgroup as we have described in this paper. In fact there
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is a believe that the coisotropic subgroups survive the quantizgit@@nThe coisotropic
subgroups define quantum homogeneous spaces for quantum groups and hopefully our
description of the boundary conditions in the quantum theory can produce a new insight
into the subject.

It is obvious that within this project the next natural step is to consider the present model
in the context of the quantum theory. We believe that our results should be helpful for the
quantization of the theory. We are planning to come back to this issue elsewhere.
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Appendix A

In this appendix we present the proof that for the (on-shell) general Poisson sigma model
the image oK is contained in a single symplectic leaf. The similar argument was presented
in [5].

The first equation in (3.2) implies that each tangent vectaX (&) is tangent to the
symplectic leafS. However this fact alone does not imply that Mnis contained in a
single leaf. The first equation in (3.2) actually says that the image of each uywn X
is an integral curve of the (parameter-dependent) vector &#&1{dX)n,., (£())&*(1)d,,. Let
x(0) = xp € Sthen by the splitting theorem (Theorem 2.1628]) it exists a neighborhood
Uy, wWhich is Poisson equivalent t6,, x N, whereS,, = SN U,, andN is a Poisson
manifold of zero rank atg: the integral curve passing througfthen is the direct product
of a curve inS and one irN. Since existence and uniqueness of the integral curve is assured
also for parameter-dependent vector fields (modulo some assumption, see comment after
Theorem 2.1.2 ofl]), the integral curve iiN passing by is the constant one.
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