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Abstract

We study the Poisson sigma model which can be viewed as a topological string theory. Mainly
we concentrate our attention on the Poisson sigma model over a group manifoldG with a Poisson–
Lie structure. In this case the flat connection conditions arise naturally. The boundary conditions
(D-branes) are studied in this model. It turns out that the D-branes are labelled by the coisotropic
subgroups ofG. We give a description of the moduli space of classical solutions over Riemann surfaces
both without and with boundaries. Finally we comment briefly on the duality properties of the model.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The Poisson sigma model introduced in[16,25] is a topological two-dimensional field
theory with the tangent spaceM being a Poisson manifold. The model is closely related to
other two-dimensional models such as gravity models, the Wess–Zumino–Witten models
and two-dimensional Yang–Mills theory. Recently the Poisson sigma model has attracted
considerable attention due to its relation to deformation quantization. Namely it has been
shown in[8] that the perturbative path integral expansion of the Poisson sigma model over
the disk leads to the Kontsevich’s star product[21].
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In the present paper, we conduct a systematic investigation of the classical Poisson sigma
model with the target space being a Poisson–Lie group. We consider the model defined
over Riemann surfaces both with and without boundaries. The Poisson–Lie groups are the
semiclassical limit of quantum groups, therefore by exploring these models at the quantum
level we may hope to find new insights into quantum groups. This could be considered as the
main motivation for the project. In the present paper, we take the first step in this direction
and explore the classical theory, we hope to come back to the quantum theory elsewhere.

The key observation of the paper is that the Poisson action of a Poisson–Lie group on a
target manifold implies the existence of a flat connection in the corresponding model. In par-
ticular if the target manifold is a Poisson–Lie group then the on-shell Poisson sigma model
can be reformulated in terms of the flat connections of an appropriate principal bundle and
the parallel section of an associated fiber bundle. Moreover the infinitesimal on-shell gauge
transformations can be interpreted as dressing transformations and integrated to define finite
gauge transformations. This allows us to define the space of solutions modulo gauge transfor-
mations. Since the dressing transformations are transitive on symplectic leaves, the moduli
space can be characterized in terms of the space of leaves. Another important point is that
the boundary conditions are labelled by the coisotropic subgroups of the Poisson–Lie group.

Some of these issues have been already addressed in the literature. Previously the Poisson
sigma model over the Poisson–Lie group has been considered in[2,13] in connection to
G/G Wess–Zumino–Witten theories. While our project was in progress the work[7] has
appeared where the systematic study of Poisson sigma models over Poisson–Lie groups
has been attempted. Despite some intersections between the results of the work[7] and the
present paper, hopefully we can offer a reasonably complete picture of the classical model
and clarify some important issues. The spaces of classical solutions of the Poisson sigma
models have also been discussed previously (e.g., see the recent work[5] and the references
therein). The important recent work[9] should be mentioned where the first systematic
study of general boundary conditions for the Poisson sigma model has been undertaken. In
the present paper, we clarify some general issues and as well as we give an illustration of
the possible boundary conditions which are specific for the Poisson–Lie case.

The paper is organized as follows. InSection 2we review the relevant notions from the
theory of Poisson manifolds and Poisson–Lie groups. InSection 3we recall the definition
of the Poisson sigma model and go on to discuss the general boundary conditions for the
model in particular. We arrive at the same result as in[9], however the derivation is somewhat
different. InSection 4we analyze the relation between the group action on the target space
and the symmetries (and their generalizations) of the Poisson sigma model. The main
observation is that the Poisson action of a Poisson–Lie group implies the flat connection
conditions for the Poisson sigma model. Then inSection 5we apply these results to the
specific case when the target space is a group manifold itself. The on-shell model can be
rewritten in terms of new variables which have a clear geometrical interpretation: the flat
connection of the principal bundle and the parallel section of the associated fiber bundle.
We also offer the appropriate description of the boundary conditions in this context. Using
these results inSection 6we construct the moduli spaces of the classical solutions of the
model over a generic Riemann surface both with and without boundaries. The description
that we obtain connects the moduli space to the space of symplectic leaves. This space of
leaves describes a very intrinsic property of the Poisson structure. Since our considerations
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are only based on the condition that the dressing transformations are complete, the results
are very general. On the other hand it is necessary to have more specific information about
the model in order to give more explicit description of the moduli space. As an illustration
of our formal results we discuss briefly the BF-theory inSection 7. Section 8contains some
observations about the duality which is supposed to relate two models over different (but
dual) Poisson–Lie groups. Finally, inSection 9we summarize the results and offer some
speculations about the possible further development of our work.

2. Poisson structures associated to Lie groups

In this section we review some basic notions and fix notations. Namely we collect some
general facts concerning Poisson manifolds and Poisson–Lie groups, see[28,22] for a
general reference.

A smooth manifoldM is called aPoissonmanifold if there exists a tensorα ∈ ∧2T ∗M
such that [α, α]sn = 0. The bracket [, ]sndenotes the Schouten–Nijenhuis bracket for the an-
tisymmetric contravariant tensor fields. In local coordinates,α = αµν∂µ ∧ ∂ν, this amounts
to the following equation:

αµρ∂ρα
νσ + ασρ∂ρα

µν + ανρ∂ρα
σµ = 0. (2.1)

The Poisson bracket onC∞(M) is defined as{f, g} = 〈df ⊗ dg, α〉. A mapφ :M→ N
between two Poisson manifolds is a Poisson map ifφ∗αM(x) = αN(φ(x)), for eachx ∈M.

If M is an even dimensional manifold andα has maximal rank thenα−1 is a symplectic
form. In the general caseαdefines a symplectic foliation. The tangent space to the symplectic
leaf passing throughx ∈M is�(T ∗

xM) where the sharp map� : T ∗Mx → TMx is defined
by �(ωx) = 〈ωx, α(x)〉, for ωx ∈ T ∗

xM. In the local coordinates we have that�(dxµ) =
αµν∂ν. Each leaf turns out to be symplectic. A Poisson manifold can be defined by giving
its symplectic foliation instead of the Poisson bivector.

One can define a Lie-bracket on one formsΩ1(M); it satisfies{df,dg} = d{f, g} for
everyf, g ∈ C∞(M) and� defines a Lie algebra homomorphism between forms and vector
fields. We refer to[28] for the complete definition.

A submanifoldD ofM is calledcoisotropicif �(N∗
xD) ⊂ TxD for eachx ∈ D, where

N∗
xD = {ωx ∈ T ∗

xM|〈ωx, vx〉 = 0,∀ vx ∈ TxD} is the fibre inx ∈ Dof the conormal bundle
of D. Symplectic leaves and preimages of symplectic leaves under a Poisson map are
examples of coisotropic submanifolds.

If the Poisson manifold is a Lie groupG then it is natural to ask about the compatibility
between the Poisson bracket and the group multiplication. A Lie groupG which is also a
Poisson manifold is called aPoisson–Lie groupif the group multiplicationm : G× G→ G
is a Poisson map (where we assume onG× G the canonical Poisson structure of the direct
product). Let us denote by�g andrg the left and right translations ofg ∈ G correspondingly.
Then one can show thatG is a Poisson–Lie if and only if the Poisson tensorα satisfies the
following property:

α(g1g2) = �g1∗(α(g2)) + rg2∗(α(g1)). (2.2)
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One can verify thatα(e) = 0, i.e. the identity is always a degenerate point, so that a Poisson–
Lie group can never be symplectic.

A crucial property for a simply connected Poisson–Lie group is that it defines a dual
Poisson–Lie group. Letg be the Lie algebra ofG; ong∗ ≡ T ∗

e G the bracket

{def,deg} = de{f, g}, f, g ∈ C∞(G) (2.3)

defines a structure of Lie algebra. LetG∗ be the (simply connected) group whose Lie algebra
is g∗. It can be shown that alsoG∗ is a Poisson–Lie group and thatG∗∗ is G; we refer toG∗
as thedual groupof G.

The left invariant forms inG close a finite-dimensional subalgebra ofΩ1(G) and define a
canonical realization ofg∗; by applying the� map we also get a realization ofg∗ as vector
fields. Let{TA} be a basis ofg and let{TA} be the dual basis ofg∗: structure constants are
defined as [TA, TB] = fAB

CTC and [TA, TB] = f̃ ABCT
C. Let {ωA} be the corresponding

basis of left invariant forms onG, and let{sA = �ωA} be the so-calleddressing vector fields.
Thus we have that

[sA, sB] = f̃ ABCs
C, (2.4)

where [, ] is the Lie-bracket for the vector fields and

{ωA,ωB} = f̃ ABCω
C. (2.5)

If the dressing vector fields are complete then the corresponding action ofG∗ onG is called
thedressing actionandG is called acompletePoisson–Lie group. For example, any compact
Poisson–Lie group and its dual are complete.

The action of a Poisson–Lie group (G, w) on a Poisson manifold (M, α) is Poisson if
the mapφ : G×M→M, φ(g, x) = gx is a Poisson map. One can show that this leads to
the following property:

α(gx) = φg∗α(x) + φx∗w(g), (2.6)

whereφg :M→M, φg(x) = φ(g, x), andφx : G→M, φx(g) = φ(g, x). The dressing
action ofG∗ onG is Poisson; furthermore it is transitive on symplectic leaves. The symplectic
leaves are the orbits of the dressing action and therefore, in analogy with the coadjoint orbits,
the symplectic leaf can be thought of as a homogeneous spaceS ∼ G∗/H(S,x0), whereH(S,x0)
is stability subgroup of a fixed pointx0 ∈ S.

A subgroupH is a Poisson–Lie subgroupif it is a Poisson–Lie group itself and the
injection map is a Poisson morphism. A subgroupH ⊂ G is said to becoisotropicif it is a
coisotropic submanifold (see[27,30,24]for what follows). Every Poisson–Lie subgroup is
coisotropic but it is not true the opposite. LetH be connected and leth be its Lie algebra. It
can be shown thatH ⊂ G is coisotropic if and only ifh⊥ is a Lie subalgebra ofg∗, where
h⊥ ⊂ g∗ is the annihilator ofh. To each coisotropic subgroupH of G we can associate the

subgroupH⊥ of G∗, whose Lie algebra ish⊥. Sinceh⊥⊥ = h thenH⊥ is a coisotropic
subgroup ofG∗; we callH⊥ thecomplementary dualofH.

If H is a closed coisotropic subgroup, the mappH : G→ G/H defines a Poisson tensor
on the homogeneous spaceG/H such thatpH is a Poisson map. So the action ofG onG/H
is Poisson andpH(e) ∈ G/H is a degenerate point; in this case the Poisson structure is never
symplectic.
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We will need the following observation. Let us introduce a basis ingsuch that{TA}nHA=1 is
a basis forh, it is clear that{ωA(x)}A>nH is a basis forN∗

xH for eachx ∈ H andsA(x) ∈ TxH
for eachA > nH; i.e. the dressing action ofH⊥ leavesH invariant.

The important role played by coisotropic subgroups is fully appreciated in the quantiza-
tion process (see[10] for the following considerations). There exists a quantum counterpart
of the construction of Poisson homogeneous spaces described above. It is an experimental
fact of quantum groups that coisotropic subgroups are quantized; they define the so-called
quantum coisotropic subgroupsof quantum groups. By using them it is possible to con-
struct all the so-called embeddable quantum homogeneous spaces as quotient of quantum
groups. See for instance[6] for the role played by coisotropic subgroups of standardU(4)
in defining a quantum version of the instanton bundle.

Finally let us recall the definition of theDrinfeld doubleD(g). LetD(g) = g⊕ g∗ be the
direct sum of vector spaces. Then there exists a unique Lie algebra structure onD(g) such
thatg andg∗ are Lie subalgebras and isotropic with respect to the non degenerate pairing
〈X1 + Y1, X2 + Y2〉 = Y1(X2) + Y2(X1).

3. Poisson sigma model

Let us start by introducing the Poisson sigma model. The model has two bosonic real
fields,X andη. X is a map1 from the two-dimensional worldsheetΣ (possibly with bound-
aries) to a Poisson manifoldMof dimensiondandη is a differential form onΣ taking values
in the pull-back byX of the cotangent bundle ofM, i.e. a section ofX∗(T ∗M) ⊗ T ∗Σ.
In local coordinates,X is given byd functionsXµ(ξ) and η by d differential 1-forms
ηµ(ξ) = ηαµ dξα (whereα, β = 1,2 andµ, ν = 1, . . . , d). The action of the Poisson sigma
model given by the following expression:

S =
∫
Σ

d2ξ

[
εαβηαµ∂βX

µ + 1

2
αµν(X)ηαµηβνε

αβ

]
, (3.1)

whereαµν is a Poisson tensor onM. The variation of the action gives rise to the following
equations of motion:

dηρ + 1
2(∂ραµν)ηµ ∧ ην = 0, dXµ + αµνην = 0, (3.2)

and if∂Σ �= ∅ then we should impose the boundary condition such that

(ητµδX
µ)|∂Σ = 0, (3.3)

whereη|T ∗∂Σ = ητµ dτ. The action (3.1) is invariant under the infinitesimal gauge transfor-
mations:

δβX
µ = αµνβν, δβηµ = −dβµ − (∂µα

νρ)ηνβρ, (3.4)

with the parameterβµ dXµ ∈ Γ (X∗(T ∗M)), whereΓ denotes the space of sections, such
that the following boundary condition is satisfied:

(βµ∂τX
µ)|∂Σ = 0. (3.5)

1 In Section 5we will discuss that sometimesX can be treated as a section of an appropriate fibre bundle.
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Now let us describe the boundary conditions which satisfy (3.3) and (3.5). Locally it is clear
that along the boundary∂Σ in some directionX should be taken of fixed value and in the
remaining directionsητ and gauge parameterβ should be taken zero. Thus in the covariant
language the boundary condition is given by the requirement that

X : ∂Σ −→ D ⊂M, (3.6)

i.e. the image of the boundary is a submanifoldD ofM and

η|T ∗∂Σ ∈ Γ (X∗(N∗D)), β|∂Σ ∈ Γ (X∗(N∗D)) (3.7)

and whereN∗D is the conormal bundle ofD. Here we assume that∂Σ has a single com-
ponent. This description of boundary conditions is very much analogous to the boundary
conditions of the open string theory known as D-branes. Hence we may borrow the string
jargon and refer to the submanifoldD as D-brane.

Indeed as it stands the boundary conditions (3.6) and (3.7) are not invariant under the
residual gauge transformations (i.e., the gauge transformations (3.4) restricted to the bound-
ary ∂Σ using the boundary conditions (3.6) and (3.7)). To illustrate the point let us use
the local coordinates. In the neighborhood of a pointx0 ∈ D we choose the coordinates
Xµ = (Xa,Xn) adapted to the submanifoldD such that in this neighborhood the subman-
ifold D is given by the conditionXa = 0. We use the Latin lower case letter from the
beginning of alphabet for the coordinates transverse to the submanifoldD and from the
middle for the coordinates along the submanifoldD. In these coordinates the condition
(3.7) becomesητn = 0 andβn = 0. The gauge transformations restricted to the boundary
should leave the boundary conditions invariant. Namely the following should be true:

δβX
a|∂Σ = αaµβµ|∂Σ = αabβb|∂Σ = 0, (3.8)

δβητn|∂Σ = −∂nαabητaβb = 0. (3.9)

Sinceβb andητa are unrestricted along the boundary we have to impose thatαab(0, Xn) = 0
(as a result of this∂nαab(0, Xn) = 0). Therefore�N∗D ⊂ TD and the submanifoldD is
coisotropic with respect to the Poisson structureα. We have also to check that the remaining
gauge algebra acting on unrestricted fields closes on the boundary (at least on-shell). Indeed
using the property of coisotropy,αab(0, Xn) = 0, we obtain the (on-shell) closure

[δβ2, δβ1]Xn = αnµ(∂µα
abβ2bβ1a) = αnc(∂cα

abβ2bβ1a), (3.10)

[δβ2, δβ1]ητa = δ(∂cαabβ2bβ1a)ητa, (3.11)

where in the last equation we have used the equation of motion restricted to the boundary.
Thus we can conclude that the boundary conditions for the Poisson sigma model are

given by (3.6) and (3.7) where the submanifoldD is coisotropic with respect toα. The
coisotropy follows from the consideration of the gauge symmetry on the boundary. This
coincides with the results of[9].

However we would like to bring the reader attention to a subtlety in the derivation of
the boundary conditions. In some instances it is more convenient to write the action of the
model in a form which differs from (3.1) by a boundary term. For example, for the case of
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the linear Poisson structure the action is typically written in the following form:

S =
∫
Σ

d2ξ XA
(
εαβ∂αηβA + 1

2
f̃ BCAηαBηβCε

αβ

)
, (3.12)

whereM is a vector space,̃fBCA are the structure constants of a Lie algebra and the Poisson
structureαAB = f̃ ABCX

C. The action (3.12) is the standard form for the BF-theory (for
further details seeSection 7). The action (3.12) differs from (3.1) by a boundary term. In
fact the action (3.12) is invariant under gauge transformations without any restriction on
the boundary. Nevertheless one can still repeat the analysis coming from the requirements
(3.8)–(3.11) and arrive at the same result. Namely, the boundary conditions should be given
by (3.6) and (3.7) andD is coisotropic submanifold ofM. The restriction of the gauge
transformations on the boundary come now from the requirement that they close an algebra
and leave the boundary conditions invariant.

4. Symmetries of Poisson sigma model

In this section we consider the global symmetry associated with group action onM and
its generalization for the Poisson sigma model.

Let us assume that there exist an action of a Lie groupG onM

φ : G×M −→M. (4.1)

At the infinitesimal level this action is realized by the vector fieldskA = k
µ
A∂µ which obey

the corresponding Lie algebrag relations:

[kA, kB] = fAB
CkC. (4.2)

Under the action of the groupG the fields of the model have the following transformations:

δXµ = aAk
µ
A(X), δηαµ = −aAηανkνA,µ, (4.3)

wherekνA,µ ≡ ∂µk
ν
A andaA being the parameter of the transformations. The variation of

the action (3.1) under (4.3) is given by

δS = 1

2

∫
d2ξ εαβaAηαµηβν(LkAα

µν) +
∫

d2ξ εαβ∂βa
A(ηαµk

µ
A). (4.4)

If LkAα
µν = 0 then the transformations (4.3) are the global symmetries of the action. Thus

in this case the Poisson structureα is invariant under the action ofφ,

α(gm) = φg∗α(m), ∀g ∈ G, ∀m ∈M. (4.5)

For this symmetry the corresponding conserved current isJαA = ηαµk
µ
A with the conserva-

tion law

dJA = εαβ∂αJβA = 0. (4.6)

The gauge transformations (3.4) imply the following transformations forJA:

δβJA = −d(βµk
µ
A) + βµk

µ
A,ρ(dX

ρ + αρσησ), (4.7)
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where the last term is proportional to the equation of motion. Hence we conclude that for
the Poisson sigma model with theG-invariant Poisson structure we can construct (on-shell)
(dimg) abelian flat connections, which may, however, be dependent.

The above situation can be generalized in the following way. Let us assume that the group
G is a Poisson–Lie group withw being the corresponding Poisson–Lie tensor. Then it is
natural to consider that the actionφ is a Poisson action. IfG is connected, at the infinitesimal
level the condition (2.6) becomes

LkAα
µν = f̃ CBAk

µ
Ck

ν
B, (4.8)

wheref̃ CBA are the structure constants on the dual Lie algebrag∗. Defining the current
JA = k

µ
Aηµ as before we can show that the equation of motion (3.2) together with the

property (4.8) imply

dJA + 1
2f̃

CB
AJC ∧ JB = 0. (4.9)

In its turn the gauge transformations (3.4) lead to the following transformations ofJA:

δβJA = −d(βµk
µ
A) − f̃ CBAJC(βρk

ρ
B) + βµk

µ
A,σ(dXσ + ασνην), (4.10)

where again the last term is proportional to the equations of motion. Thus on-shellJ = JAT
A

can be interpreted as a flat connection of the trivial principal bundleΣ × G∗, whereG∗ is the
simply connected group corresponding to the dual Lie algebrag∗. Following the Klimcik–
Severa[19] we can understand the flatness condition (4.9) as a sort of generalization of the
conservation law; we call it the Poisson–Lie symmetry. LocallyEq. (4.9)‘ easilyJ = g̃−1 dg̃
whereg̃ is a map from the worldsheetΣ to the groupG∗.

Indeed the case of invariant Poisson structure can be embedded to the Poisson–Lie
framework assuming the trivial Poisson–Lie structure, i.e.w = 0.

5. Poisson sigma model over group manifold

In this section we consider the case when the target spaceM can be identified with a
Poisson–Lie groupG. The multiplicative property (2.2) of the Poisson tensorα implies that,
for instance, the left multiplication is a Poisson action ofG on itself, see (2.6) withw = α.
We can apply the considerations of Poisson–Lie symmetry of the previous section and define
the currentJA associated to the left multiplication, i.e.JA = k

µ
Aηµ, wherekA = k

µ
A∂µ are

now the left invariant vector fields onG.
The important issue now is thatωAµ is inverse ofkµA and the following two sets of variables

are equivalent:

(Xµ, ηµ, βµ) ⇐⇒ (Xµ, JA = k
µ
Aηµ, βA = −kµAβµ). (5.1)

The equations of motion in the new variables (X, J) read

dXµ − sAµJA = 0, dJA + 1

2
f̃ CBAJC ∧ JB = 0 (5.2)

and the on-shell gauge transformations are

δβX
µ = sAµβA, (5.3)
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δβJA = dβA + f̃ CBAJCβB, (5.4)

wheresAµ = −αµνωAν . One can easily check thatEqs. (5.2)and the transformations (5.3)
and (5.4) areon-shell completely equivalentto Eqs. (3.2)and the transformations (3.4)
taking into account the definition (5.1).

The vector fieldssA = sAµ∂µ = ωAν α
νµ∂µ = �ωA are the dressing vector fields de-

scribed inSection 2; they satisfy (2.4). The dressing action is a Poisson action and thus
we have

LsAα
µν = fCB

AsCµsBν, (5.5)

which can be explicitly checked. We can now apply the discussion of the Poisson–Lie
symmetry fromSection 4, this time with respect to the Poisson action given by the dressing
action ofG∗ defined bysA. We then introduce the currentjA = sAµηµ; as a consequence
of the Poisson symmetry of the dressing action, it satisfies the flat condition

djA + 1
2fBC

AjB ∧ jC = 0 (5.6)

and transforms under the on-shell gauge symmetries as follows:

δβj
A = dβ̃A + fCB

AjCβ̃B, (5.7)

whereβ̃A = −βµsAµ. However it is interesting to note that on-shelljA = −ωAµ dXµ. Now
if we adopt this as the definition ofjA the condition (5.6) is satisfied trivially and the gauge
transformations (5.7) ofjA are off-shell.

The infinitesimal on-shell gauge transformations (5.3) and (5.4) can be easily integrated.
In fact we know that the invariant formsΩ1(G)inv close a finite-dimensional subalgebra
of Ω1(G). If we limit the gauge transformations toβ : Σ → Ω1(G)inv then the algebra of
infinitesimal transformations is justg(Σ,g∗) = {β : Σ → g∗} and can be integrated to the
usual gauge groupG(Σ,G∗) = {γ : Σ → G∗}. If the Poisson–Lie groupG is complete, i.e.
the dressing vector fields are complete, then the gauge group acts on the solutions (X, J)
of equation of motion as a dressing transformation onX and as usual transformation of
connections onJ.

We are going now to discuss the boundary conditions in the new variables. Now we
specialize to the group case the discussion of the boundary conditions given inSection 3for
the model on a generic Poisson manifold. There we saw that we have to require thatXmaps
the boundary∂Σ in a coisotropic submanifoldD ⊂ G, i.e.X : ∂Σ −→ D. The boundary
term (3.3) can be written as follows:

(ητµδX
µ)|∂Σ = (ητµk

µ
Aω

A
ν δX

ν)|∂Σ = −(JAτj
A
τ )|∂Σ = 0. (5.8)

In terms of the currentsJ andj, the boundary conditions can be imposed as follows:

J |T ∗∂Σ ∈ Ω1(Σ) ⊗ h⊥ ⊂ Ω1(Σ) ⊗ g∗, j|T ∗∂Σ ∈ Ω1(Σ) ⊗ h ⊂ Ω1(Σ) ⊗ g,

(5.9)

such that

〈h,h⊥〉 = 0, (5.10)
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where〈 , 〉 is the natural pairing betweengandg∗ (dimh + dimh⊥ = dimg). In order to let
the gauge transformations (5.4) restricted to the boundary∂Σ close an algebra we must ask
thath⊥ ⊂ g∗ andh ⊂ g are both subalgebras. LetH⊥ ⊂ G∗ andH ⊂ G be the connected
subgroups whose Lie algebras are respectivelyh⊥ andh; we know fromSection 2that this
condition is equivalent to saying thatH ⊂ G andH⊥ ⊂ G∗ are coisotropic subgroups and
are complementary duals of each other. Finally, the underlying submanifoldD is bothH
andH⊥ invariant and coisotropic.

To clarify the discussion we can analyze the boundary condition in local coordinates. As
it has been discussed inSection 3in local coordinates the boundary conditions are given by

ητn|∂Σ = 0, n = 1, . . . ,dimD, Xa|∂Σ = 0, a = dimD+ 1, . . . ,dimG.

(5.11)

According to (5.8)–(5.10) we want to impose the following boundary conditions on the
currents:

JτA|∂Σ = 0, A = 1, . . . ,dimh, jAτ |∂Σ = 0, A = dimh + 1, . . . ,dimg.

(5.12)

Together the conditions (5.11) and (5.12) imply the following conditions on the invariant
vector fieldskA and the invariant one formsωA

kaA|D = 0, A = 1, . . . ,dimh, ωAn |D = 0, A = dimh + 1, . . . ,dimg,

(5.13)

where we have used the fact thatXn andητa are unrestricted on the boundary. In the covariant
language the condition (5.13) becomes

{kA}dimh
A=1 |D ⊂ TD, {ωA}dimg

A=h+1|D ⊂ N∗D. (5.14)

Since we are dealing with a group manifold the vector fields{kA} are linearly independent
at each point. Thus due to this fact and the property (5.14) the manifoldD has dimension
equal to dimh. The set of vector fields{kA}dimh

A=1 |D form a basis in the tangent space of the
manifoldD and therefore must be in involution. We can conclude thath is a subalgebra. In
its turn the coisotropy ofD implies that

{kA}dimh
A=1 |D ⊂ TD, {sA}dimg

A=h+1|D ⊂ TD, (5.15)

with sA being the dressing vector fields. As it was stated inSection 3the coisotropy ofD is
essential to guarantee that the gauge symmetry restricted to the boundary is consistent, i.e.
it leaves the boundary conditions invariant and it closes to an algebra (at least on-shell) on
the boundary.

Now the new point is that in the case of a Poisson–Lie group, the model can be written
in new variables and it makes sense to consider the on-shell gauge transformations as maps
from Σ to the dual groupG∗. Therefore in this context it is natural to require that the
symmetry on the boundary have the same nature as in the bulk. Namely we have to require
thath⊥ forms a subalgebra ofg∗ and thus the gauge transformations (5.4) have a natural
restriction to the boundary. In this caseJ andj (on-shell) transform as gauge connections
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both in the bulk and on the boundary and their algebra of gauge transformations has field-
independent structure constants. Once that we ask thath andh⊥ are Lie subalgebras, then
the submanifoldD is invariant under the action ofH andH⊥ and the vectors (5.15) are the
fundamental vector fields of these actions. It is important to stress that not any subgroup
H of G has its dualH⊥ ⊂ G∗ in the above sense. Only the coisotropic subgroups (see the
definition inSection 2)H would satisfy this requirement.

We finally motivated the following definition.

Definition 1. Let H be a coisotropic subgroup ofG. An admissible (H,H⊥)-brane is a
coisotropic submanifoldD ⊂ G such that it is invariant after the left action ofH ⊂ G and
the dressing transformations ofH⊥. Moreover dimD = dimH.

A natural candidate to be an (H,H⊥)-brane is the subgroupH itself. However there
exists a wider class of such branes that satisfy the previous requirements. For example, one
can see the discussion of admissible branes in the context of BF-theory.

Example 2. If H = G thenH⊥ = {e} and the only admissible brane isD = G. In this case
the boundary conditions simply state thatJ |∂Σ = 0, without any restriction onX, i.e. we
recover the Cattaneo and Felder boundary conditions from[8].

The other extreme case is whenH = {e} andH⊥ = G∗; then an admissible brane is a
fixed pointg0 of the dressing transformations ofG∗, i.e. a degenerate point. In this case the
boundary conditions amount to fixingX = g0 on the boundary without any restriction onJ.

6. Moduli space of solutions: group case

In this section we want to describe the moduli space of gauge inequivalent solutions
of the equations of motion for the Poisson sigma model on a Poisson–Lie groupG. We
assume that the dressing vector fields are complete, so thatG∗ acts onG by the left dressing
transformations. In this case the gauge transformations can be integrated to finite transfor-
mations and therefore the moduli space is well-defined. We consider the model over an
arbitrary Riemann surfaceΣ either with a boundary or without a boundary. In the case
of non-empty boundary the boundary conditions should be incorporated into the task as
discussed inSection 5. In particular our goal is to relate the moduli space to the structure of
symplectic leaves ofG. Namely we will describe it as certain union of the moduli spaces of
flat connections of those subgroups ofG∗ which are stability subgroups of the symplectic
leaves.

Before going into the details of the present model we need to briefly recall some basic
facts on flat connections.

6.1. Moduli spaces of flat connections

Starting from the Atiyah–Bott work[3] the moduli space of flat connections over the
Riemann surfaces has been extensively studied in the mathematical and physical literature.
The typical description of the moduli space of flatH connections overΣ, withH being a
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Lie group, is Hom(π1(Σ),H)/AdH, which in the case of two-dimensional surfaces is a
symplectic space. We are mainly interested to focus on the flat structures that lie behind
this description. This approach has been advocated in[17] and, since it will be useful in the
following, we are going to sketch it. In this section we consider that all the maps between
smooth manifolds are smooth; for equivalence between two principalH-bundles overΣ
we mean a bundle morphism which is a diffeomorphism on the total space and induces the
identity onΣ and onH.

Let P = P(Σ,H) be a flat principal bundle overΣ with fibre H, i.e. a bundle that
admits a flat connection. It is always possible to choose an open covering{Uα} for Σ and
the trivialization forP such that the transition functionshαβ are constant. In fact letρ ∈
Hom(π1(Σ),H) be the map that associates to each cycle the holonomy around it (defined
up to conjugation). It can be shown thatP is equivalent toΣ̃ ×ρ H, whereΣ̃ is the universal
covering ofΣ, and thatΣ̃ ×ρ H admits a canonical locally constant trivialization, see[11]
for details. Lethαβ be the transition functions in this trivialization ofP; we can describe all
flat connections inPasJ = {−dψαψ−1

α }, withψα : Uα → H. The compatibility conditions
imply that

hαβ dψβψ
−1
β hβα = dψαψ

−1
α (6.1)

onUα ∩ Uβ. We can associate to the collection of{ψα} an equivalent bundlêP(Σ,H) with
transition functionshJαβ = ψ−1

α hαβψβ onUα ∩ Uβ which due to (6.1) satisfy

ψα dhJαβψ
−1
β = −dψαψ

−1
α hαβ + hαβ dψβψ

−1
β = 0 (6.2)

and thereforehJαβ are constants and define a new locally constant trivialization ofP. Let us
identifyg−1

α hJαβgβ andhJαβ for all constantgα ∈ Hand denote the corresponding equivalence

class [hJ ]. We denote byF(Σ,H, P) the moduli space of gauge inequivalent flat connections
onP. Let us denote with [J ] the class ofJ in F(Σ,H, P). The gauge transformations are
defined as automorphisms ofP, i.e.γ ∈ Aut(P) is defined byγ = {γα|γα : Uα → H} such
that γαhαβ = hαβγβ on Uα ∩ Uβ. Thenγ(J) = {−dψγα(ψγα)−1} with ψγα = γαψα. Since

h
γ(J)
αβ = hJαβ, we get a well defined map that sends [J ] in [hJ ].

Let us suppose that̂h are locally constant transition functions that define a bundle
P̂(Σ,H) equivalent toP, then it exists{ψα : Uα → H} such thatĥαβ = ψ−1

α hαβψβ. It

is then clear thatJĥ = {−dψαψ−1
α } is a flat connection inPand that the map that sendsĥ in

Jĥ depends only on [ĥ]. Every class of flat connections [J ] in P can then be represented by
the class of locally constant transition functions [hJ ]. In other words the spaceF(Σ,H, P)
can be equivalently defined as follows:

F(Σ,H, P) = {ĥαβ : Uα ∩ Uβ → H|ĥαβĥβγ = ĥαγ , dĥαβ = 0}/ ∼, (6.3)

where we consider only those constantĥαβ which define the bundlêP equivalent toPwhile
the equivalence∼ is defined aŝhαβ ∼ s−1

α ĥαβsβ, for a constantsα ∈ H. We refer to[17] for
the interpretation of [h] in the Čech cohomology of the sheaf of locally constant sections
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on AdP , where AdP = P ×G G. Finally we can define the space

F(Σ,H) =
⋃
[P ]

F(Σ,H, P), (6.4)

whereP = P(Σ,H) is a representative in the class [P ] of equivalent bundles and the union
runs over all these classes.

Now let us try to apply the same logic to the case of Riemann surfaces with boundary.
For the sake of clarity let us assume that the boundary∂Σ has a single component which
is homeomorphic toS1. LetK be a subgroup ofH, P(∂Σ,K) be aK-bundle over∂Σ and
P(Σ,H) be anH-bundle overΣ. We require to exist a bundle morphism

P(∂Σ,K) → P(Σ,H), (6.5)

which implies the injections∂Σ ↪→ Σ andK ↪→ H. Let us choose a good open covering
{Uα} ofΣ such that{Vα = Uα ∩ ∂Σ �= ∅} is a covering of∂Σ. We assume that there exists
such trivialization for the flat bundleP(Σ,H) such that the bundle map (6.5) is realized
locally as the injection

Vα ×K ↪→ Uα ×H. (6.6)

This means that ifhαβ are the transition functions forP in this trivialization thenhαβ|∂Σ ∈ K
define the transition functions forP(∂Σ,K). We denote all these data asP(Σ,H,K).

There is a natural notion of equivalence of bundles with such boundary conditions. We
say thatP(Σ,H,K) is equivalent toP̃(Σ,H,K) if there exist mapsξα : Uα → H and
ξα|Vα ∈ K such that̃hαβ = ξ−1

α hαβξβ, wherehαβ (resp.h̃αβ) are the transition functions for
P (resp.P̃). This is equivalent to say that the following diagram is commutative

(6.7)

where the vertical arrows denote the standard equivalence of bundles defined byξα and
ξα|∂Σ.

We are going to define flat connections inP(Σ,H,K). Namely we consider flat con-
nectionsJ in P(Σ,H) whose restriction on the boundary∂Σ reduces to connections over
P(∂Σ,K). A gauge transformation is an automorphism ofP(Σ,H,K), i.e. it is defined
asγ = {γα|γα : Uα → H, γα|Vα ∈ K} such thatγαhαβ = hαβγβ onUα ∩ Uβ. Now it is a
straightforward exercise to generalize the description of flat connections with prescribed
boundary conditions in terms of the flat structures described in (6.5). In the fixed trivializa-
tion of (6.5) we can describe all flat connections asJ = {−dψαψ−1

α }, with ψα : Uα → H
andψα|Vα ∈ K. We can construct an equivalent bundleP̂(Σ,H,K) with the constant tran-
sition functionshJαβ = ψ−1

α hαβψβ. These transition functions define the following space:

F(Σ,H,K, P) = {ĥαβ : Uα ∩ Uβ → H|ĥαβĥβγ = ĥαγ ,

dĥαβ = 0, ĥαβ|∂Σ ∈ K}/ ∼, (6.8)

where we consider only those constantĥαβ which define bundleŝP(Σ,H,K) equivalent
to P(Σ,H,K) according to (6.7), while the equivalence∼ is defined aŝhαβ ∼ s−1

α ĥαβsβ,
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for constantsα ∈ H such thatsα|Vα ∈ K. In analogy with the previous discussion for the
case without boundary one can show that two gauge equivalent flat connections on (6.5)
define the same element inF(Σ,H,K, P). Also we can go in the opposite direction: an
elementĥαβ of F(Σ,H,K, P) defines a flat bundlêP(Σ,H,K) which is equivalent to
P(Σ,H,K), i.e. there exist{ψα : Uα → H, ψα|Vα ∈ K} such that̂hαβ = ψ−1

α hαβψβ. Then
one can construct the flat connectionJ = {−dψαψ−1

α }. ThusF(Σ,H,K, P) is the space of
gauge inequivalent flat connections onP(Σ,H,K). Finally we can define the space

F(Σ,H,K) =
⋃
[P ]

F(Σ,H,K, P), (6.9)

whereP = P(Σ,H,K) is a representative of the class [P ] of equivalent bundlesP(Σ,H,K)
and the union is over all these classes.

In the next two subsections we will use this description of flat connections. This de-
scription is a useful tool to deal with solutions that correspond to topologically non-trivial
bundles. In fact, even assuming that the groupG∗ is connected and simply connected we
still have to consider stability subgroups of symplectic leaves which can be not simply
connected and therefore also admit non-trivial principal bundles.

6.2. Riemann surfaces without boundaries

In this subsection we consider a Riemann surfaceΣ without boundary, i.e.∂Σ = ∅. We
consider the case whenGandG∗ are connected and simply connected groups. In this situation
any principal bundle with baseΣ and fiberG∗ is equivalent to the trivial one,Σ × G∗. The
group of gauge transformations isG(Σ,G∗) = {γ : Σ → G∗}. Let us considerΣ × G as
the fibre bundle associated to the dressing action ofG∗ onG. In the linear case it is a vector
bundle, in the general case it is just a fibre bundle. Thus the relevant fields (X, J) can then be
described as a connectionJon the principal bundleΣ × G∗ and as a section̂X(ξ) = (ξ,X(ξ))
of the associated fiber bundleΣ × G. The infinitesimal transformations defined in (5.3) and
(5.4) are integrated to the action ofG(Σ,G∗) on the solutions (X, J). We then define the
main object of our study:

M(Σ,G) = {Solutions of (5.2)}
G(Σ,G∗)

. (6.10)

If (X, J) is a solution of equations of (5.2) let us indicate with [(X, J)] the corresponding
element inM(Σ,G).

It is easy to find the local solution of (5.2). Let us choose some open covering{Uα} of
Σ. Then sinceJ is flat, we can always findψα : Uα → G∗ such thatJ = {−dψαψ−1

α } and
moreover there existxα0 ∈ G such thatX(ξ) = {ψα(ξ)(xα0)} onUα, whereψα acts onxα0 by
means of the dressing transformation. Since we deal with the trivial bundle there are the
following gluing conditions:

dψαψ
−1
α = dψβψ

−1
β , ψα(ξ)(xα0) = ψβ(ξ)(xβ0) onUα ∩ Uβ. (6.11)

Since the dressing action preserves the symplectic leaves ofG, we can conclude thatxα0 and
X(ξ) stay inside the same symplectic leafS (for the general statement seeAppendix A).
Let us fix a pointx0 ∈ S. Since the dressing action is transitive onS we can always
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find sα ∈ G∗ such thatxα0 = sα(x0). If we defineφα = ψα ◦ sα thenX(ξ) = {φα(x0)} and
J = {−dφαφ−1

α }, i.e. due to (6.11) in the class [hJ ] describingJ we can choose a rep-
resentativehX,Jαβ = φ−1

α φβ ∈ H(S,x0), the stabilizer subgroup ofx0. If we changesα in

sαxα with xα ∈ H(S,x0) we get x−1
α hJαβxβ. So we have defined a mapping that sends

[(X, J)] to [hX,J ] ∈ F(Σ,H(S,x0)): this statement is equivalent to saying thatJ reduces
to anH(S,x0)-connection. Next we show that the map [X, J ] → [hX,J ] is injective. In
fact suppose that (X = ψα(x0), J = −dψαψ−1

α ) and (Y = φα(x0), J ′ = −dφαφ−1
α ) are

mapped to the same flat connection [hαβ]. This means that there existsxα ∈ H(S,x0) such
thatψ−1

α ψβ = x−1
α φ−1

α φβxβ. It is then easy to verify thatX = γ(Y ) andJ = γ(J ′) with
γ = ψαx

−1
α φ−1

α = ψβx
−1
β φ−1

β .

Let [ĥαβ] describe a flatH(S,x0)-connection living in the bundle defined by constant
hαβ; this means that there existφα : Uα → H(S,x0) such that̂hαβ = φ−1

α hαβφβ. Obviously
[ĥαβ] defines also a flatG∗-connection, that, beingG∗ simply connected, lives in a bundle
equivalent toΣ × G∗. Then there existsψα : Uα → G∗ such thathαβ = ψ−1

α ψβ andJ =
{−d(ψαφα)(ψαφα)−1} andX(u) = ψαφα(ξ)(x0) is a solution of (5.2).

The space of inequivalent solutions (X, J), such thatX lives in S, is in one to one
correspondence with the moduli space of flatH(S,x0) connections onΣ (including the
reducible ones!). IfH(S,x0) is not a simply connected subgroup ofG∗ then we will have to
take into account all the inequivalent bundlesP(Σ,H(S,x0)) and we will get the whole space

F(Σ,H(S,x0)) =
⋃
[P ]

F(Σ,H(S,x0), P). (6.12)

In the case whenH(S,x0) is simply connected then every principal bundle is equivalent to
the trivial one and the space (6.12) is just the space of the flat connections forΣ ×H(S,x0).
In general one can verify that it is possible to find a gauge such thatX = x0 andJ is an
H(S,x0)-connection form if and only if theH(S,x0)-bundle defined byhX,Jαβ is trivial. In fact,
with the same notations than before for (X, J), if there existsfα : Uα → H(S,x0) such that
h
X,J
αβ = f−1

α fβ thenγ = fαφ
−1
α = fβφ

−1
β extends to allΣ and defines the desired gauge

transformation. As an example of discussion of the flat connections on the two-dimensional
torus with a non-simply connected group we refer the reader to[26].

Since dressing transformations preserve symplectic leaves, gauge transformations cannot
mix solutions living in different leaves. Therefore one can conclude that the whole moduli
space is the union over symplectic leavesSof the spaces described in (6.12). All the previous
discussion can be summarized in the following proposition.

Proposition 3. LetLG be the space of symplectic leaves ofG andp : M(Σ,G) → LG be
the map that associates to[X, J ] the symplectic leaf where X lives. Then, for eachS ∈ LG,
fix x0 ∈ S, we have that

p−1(S) = F(Σ,H(S,x0)),

whereH(S,x0) ⊂ G∗ is the stability subgroup ofx0.
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This shows that the spaceM(Σ,G) is a topological space with the topology induced from
the space of symplectic leavesLG which is equipped with the quotient topology. However
we should admit that this topology onM(Σ,G) is too rough. We feel that the present level
of discussion is too general and extra conditions should be introduced in order to define a
finer topology onM(Σ,G).

Remark 4. The analysis of equations of motion can be done in an alternative and very
geometrical way. The first equation of (5.2) means thatX defines a parallel sectioñX(u) =
(u,X(u)) with respect to the connectionJ. In fact letωJ (u, γ) ∈ (T ∗

uΣ ⊕ T ∗
γ G

∗) ⊗ g∗ be
the connection form defined byJ and letH(u,γ) = {v ∈ TuΣ ⊕ TγG

∗, 〈ωJ, v〉 = 0} be the
horizontal space. Letg ∈ G define the mapg : Σ × G∗ → Σ × G, g(u, γ) = (u, γ(g)) and
let H̃u,g = g∗(H(u,e)) define the horizontal space in the associated bundleΣ × G. It is
straightforward to verify that the first of (5.2) is equivalent toX̃∗(TΣ) ⊂ H̃ . Moreover the
first of (5.2) implies also thatX(Σ) is contained in a single symplectic leafS = G∗/H(S,x0)
(seeAppendix A), for some arbitraryx0 ∈ S. ThenX̃ defines a section in the associated
fibre bundleΣ × G∗/H(S,x0). If now we apply Proposition 7.4 of[20] we can conclude that
X̃ is parallel if and only ifJ reduces to a connection in theH(S,x0)-bundlePX(Σ,H(S,x0)) =
{(u, γ) ∈ Σ × G∗|X(u) = γ(x0)}. Remark thatPX is the pullback byXof the homogeneous
bundleG∗ → G∗/H(S,x0).

Example 5. Let us consider the moduli space over the two-dimensional sphereS2. In this
case all flat connections are equivalent to the trivial one whatever is the groupH(S,x0) and
therefore the moduli space of solutions coincides with the space of the symplectic leaves
for G, i.e.M(S2,G) = LG. In general this space can be even non-Hausdorf.

6.3. Riemann surfaces with boundaries

Now we turn to the description of the moduli space of solutions over a Riemann surface
with boundary. For the sake of clarity we assume that the boundary has a single component,
which we denote∂Σ. However the generalization for the case with more than one component
is straightforward.

In the previous subsection we have solved problem in the bulk and now we have to
incorporate the boundary conditions. Let us remind the discussion of boundary conditions
from Section 5. We have argued that the appropriate conditions are given by a coisotropic
submanifoldD which is invariant under coisotropic subgroupsH ⊂ G andH⊥ ⊂ G∗. For
the fields the following conditions are imposed

X : ∂Σ → D, J |∂Σ ∈ Ω1(∂Σ) ⊗ h⊥, (6.13)

whereh⊥ is the Lie algebra of the subgroupH⊥ ⊂ G∗. On the boundary the infinitesimal
gauge transformations defined byβ = βAT

A are living inh⊥. Therefore we can interpret
J |∂Σ as a connection for the trivialH⊥ principal bundle over∂Σ ∼ S1.

We assume thatG∗ is simply connected andH⊥ is connected. We consider the trivial
bundles with the natural injection

∂Σ ×H⊥ ↪→ Σ × G∗. (6.14)
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Accordingly the gauge group isG(Σ,G∗,H⊥) = {γ : Σ → G∗γ|∂Σ ∈ H⊥}. Following the
discussion inSection 6.1J is interpreted as a connection on (6.14) andX is a section of the
associated bundleΣ × G that restricts on the boundary to a section of∂Σ ×D (which can
be seen as associated to∂Σ ×H⊥). We define the moduli space of the solutions

M(Σ,G,H⊥,D) = {Solutions of (5.2), X : ∂Σ → D, J |∂Σ ∈ Ω1(∂Σ) ⊗ h⊥}
G(Σ,G∗,H⊥)

,

(6.15)

which we describe below.
In the bulk the analysis of (5.2) is exactly the same as in previous subsection: theX field

lives in a symplectic leafS and the connectionJ reduces to the stability subgroupH(S,x0),
for somex0 ∈ S. The boundary conditions forceX|∂Σ to live in S ∩D. Therefore we have
to consider only those symplectic leaves such thatS ∩D �= ∅. Moreover the first equation
of (5.2) has a well defined restriction to the boundary∂Σ,

(∂τX
µ − sAµJτA)|∂Σ = 0, (6.16)

whereτ parameterizes the boundary. SinceJτ |∂Σ lives in h⊥ thenX|∂Σ lies entirely in
a single orbitO(S,H⊥) ⊂ S of H⊥ onD. Since gauge transformations are restricted on
the boundary toH⊥, each point in the moduli space of solutions identifies in this way an
H⊥-orbit inD. Let us choosex0 ∈ O(S,H⊥) ⊂ S; thenO(S,H⊥) = H⊥/(H⊥ ∩H(S,x0)).
With the same mechanism as in the bulk, on the boundaryJ |∂Σ reduces to anH⊥ ∩H(S,x0)-
connection.

Let us spell out more details of this construction. We introduce the local trivializa-
tion of J = {−dψαψ−1

α }, whereψα : Uα → G∗. As a consequence of boundary condi-
tions,ψα should be chosen such thatψα|∂Σ ∈ H⊥. Then we have thatX(u) = ψα(xα0),
so thatxα0 stay inO(S,H⊥) for α such thatVα = Uα ∩ ∂Σ �= ∅. Let us definesα0 ∈ G∗

such thatxα0 = sα0(x0). By construction, we can choosesα0 ∈ H⊥ for all α such that
Vα �= ∅. Let us defineφα = ψαs

α
0: it is clear thatφα|∂Σ ∈ H⊥ for all α ∈ I. We have that

h
X,J
αβ = φ−1

α φβ ∈ H(S,x0), andhX,Jαβ |∂Σ ∈ H(S,x0) ∩H⊥. We get a map that sends [(X, J)]

to [hX,J ] ∈ F(Σ,H(S,x0),H(S,x0) ∩H⊥), where this space has been defined in (6.9). It is
easy to verify that this map is injective.

Let us discuss now the inverse map. Let [hαβ] ∈ F(Σ,H(S,x0),H(S,x0) ∩H⊥, P), where
P denotes a bundle defined as in (6.5). SinceG∗ is simply connected, theG∗ bundle on
Σ defined byhαβ is equivalent to the trivial one, i.e. there existsψα : Uα → G∗ such
thathαβ = ψ−1

α ψβ. Analogously sinceH⊥ is connected theH⊥-bundle on the boundary
is trivial so that there existsφα : Vα → H⊥ such thathαβ|∂Σ = φ−1

α φβ. The mapγα =
ψα|∂Σφ−1

α : Vα → G∗ coincides onVα ∩ Vβ so that it can be extended toγ : S1 → G∗.
This means thatJh = −dψαψ−1

α is aG∗-connection onΣ × G∗ whose restriction to the
boundary is gauge equivalent toA = −dφαφ−1

α , i.e. Jh|∂Σ = γ(A). SinceG∗ is simply
connected everyγ : S1 → G∗ can be extended tõγ : Σ → G∗, such that̃γ|∂Σ = γ. Then
J = γ̃−1(Jh) = −d(γ̃−1ψα)(γ̃−1ψα)−1, X = γ̃−1ψα(x0) is a solution of (5.2) satisfying
boundary conditions.
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We have shown that the space of inequivalent solutions satisfying the boundary conditions
(6.13) for a fixed orbitO(S,H⊥) ⊂ D, is in one to one correspondence with the space of
H(S,x0) flat connections satisfyingH(S,x0) ∩H⊥ boundary conditions, i.e.

F(Σ,H(S,x0),H(S,x0) ∩H⊥) =
⋃
[P ]

F(Σ,H(S,x0),H(S,x0) ∩H⊥, P), (6.17)

where again [P ] runs over the inequivalent bundlesP(Σ,H(S,x0),H(S,x0) ∩H⊥). Since
dressing transformations preserve symplectic leaves andH⊥-orbits inD, the whole moduli
space of solutions will be given by the union over the differentH⊥-orbits inD. Let us
summarize this fact in the following proposition.

Proposition 6. LetLD be the space ofH⊥-orbits insideD andp : M(Σ,G,H⊥,D) → LD
be the map that associates to[X, J ] the orbit whereX|S1 lives. Then for eachO(S,H⊥) ∈
LD fix x0 ∈ O(S,H⊥). We have that

p−1(O(S,H⊥)) = F(Σ,H(S,x0),H(S,x0) ∩H⊥),

withH(S,x0) being the stability subgroup ofx0.

Example 7. Let us consider the model defined on the diskD. For the diskD all flat con-
nections are gauge equivalent to the trivial one and therefore the moduli space of solutions
coincides with the space ofH⊥ orbit of D, i.e.M(D,G,H⊥,D) = LD. In fact in [9] the
authors show thatLD is a (possibly singular) Poisson manifold and the quantization of the
model gives a deformation quantization of the algebra of functions over this moduli space.

7. BF-theory

In this section we would like to describe a concrete example and illustrate the general
results for the moduli spaces given inSection 6. We consider here the case of the linear
Poisson structure which is usually called BF-theory. The BF-theory is known for 15 years
[15,4] and is relatively well studied. At the same time it is one of the simplest non-trivial
examples of the Poisson sigma model.

First we briefly remind the description of the BF-model to show that it is really a Poisson
sigma model on a Poisson–Lie group. The model is defined on a vector spaceG, that we
consider as the abelian group of translations. We introduce on it the linear Poisson structure
αBC = f̃ BCAX

A where f̃ BCA are the structure constants for some groupG∗ such that
dimG∗ = dimG. The groupG∗ acts onG by the coadjoint action and thusG can be identified
with the dual space of the Lie algebra ofG∗. The spaceG with the Poisson structureαAB

is a Poisson–Lie group and it is dual toG∗ equipped with the trivial Poisson–Lie structure.
The dressing vector fields are the fundamental vector fields of the coadjoint action ofG∗ on
G so that they are complete by construction. The model is given by the following action:

S =
∫
Σ

XA
(

dηA + 1

2
f̃ BCAηB ∧ ηC

)
, (7.1)
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whereη is a connection on the trivial bundleΣ × G∗ andX : Σ → G is interpreted as a
section of the vector bundleΣ × G associated to the coadjoint action. As it was pointed
out at the end ofSection 3 (7.1) differs from the action of the Poisson sigma model by
a boundary term. However this fact does not affect the boundary conditions. Under the
gauge symmetries (3.4)X transforms as a section ofΣ × G andη as aG∗ connection. The
equations of motions for (7.1) imply thatη is a flatG∗ connection andX is a covariantly
constant section of the vector bundle. In particularη needs not to be redefined, i.e.η = J

in (5.1).
The symplectic leaves onG are then the coadjoint orbits ofG∗ and one can in principle

apply the results of orbit method to get informations about the moduli space of solutions
M(Σ,G) (see[18]). Let us assume for instance thatG∗ is a compact (connected and simply
connected) group. The stability subgroup of each coadjoint orbitS is a subgroupH(S,x0)
which is contained in a finite number of conjugacy classes of subgroups ofG∗. In particular
the stability subgroup for the orbits of maximal dimension can be chosen as a maximal
abelian connected subgroupT of G∗ and for the generic orbit it can be chosen such that
T ⊂ H(S,x0) ⊂ G∗. There is a finite number of typical fibers of the projection map described
in Proposition 3and the fibers over the orbits of maximal dimension are all isomorphic.

Example 8. Let us be more concrete and consider the very simple case whenG∗ = SU(2)
andΣ is closed. We refer to the notations ofProposition 3. HereG = R3 can be seen as
the additive group of translations and the dressing transformations are just rotations onR3.
A coadjoint orbit is identified by the equationXAηABXB = ρ, whereηAB is the Cartan-
Killing metric andρ ≥ 0. The spaceLG of symplectic leaves is thenR+. The caseρ = 0 is a
degenerate point and its stability subgroup is the wholeSU(2): sop−1(0) = F(Σ, SU(2)). If
ρ > 0 the orbit is a sphere and the stability subgroup isU(1), so thatp−1(ρ) = F(Σ,U(1)).
SinceU(1) is not simply connected group, we have to take into account also the contribution
of topologically non-trivialU(1) bundles. The solutions corresponding to the trivialU(1)
bundle can be always put in the form whereX = x0 andJ is a flatU(1) connection form.

Next we can turn to the discussion of the BF-theory on a surface with boundary. Following
the logic ofSection 5the boundary conditions of the model are described by admissible
branes, i.e. submanifoldsD of G satisfying the properties ofDefinition ??. Let us choose
a subgroupH⊥ ⊂ G∗ with Lie algebrah⊥: it is always coisotropic inG∗ since onG∗ the
Poisson structure is trivial. The complementary dual algebrah is defined as the annihilator
of h⊥. The corresponding groupH can be identified withh itself. We can conclude thatH is
a vector subspace ofG which is coisotropic and invariant under the coadjoint action ofH⊥.
We can construct other admissible branes by considering the fixed points of the coadjoint
action ofH⊥. Letg0 be a fixed point forH⊥ thenD = H+ g0 is still an admissible brane.
In more explicit terms let us choose coordinatesXA = (Xa,Xn) on G such thatXa = 0
parameterizesH. ThenD is the hyperplaneXa = ga0; the coisotropy ofD follows:

αab(Xa = ga0, X
α) = f̃ abnX

n + f̃ abcg
c
0 = 0, (7.2)

wheref̃ abn = 0 sinceh⊥ is a subalgebra and̃fabcgc0 = 0 sinceg0 is H⊥ invariant. It is
clear also that these are the only admissible (H,H⊥) branes.
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Example9. Let us describe these branes more explicitly in the case ofSU(2)-BF-theory. We
continue the discussion started inExample 9and we refer now to the notation ofProposition
6. Let us chooseH⊥ as the diagonalU(1) so thatH = R2 = {(x, y, z = 0)}. Admissible
branes are thenD(z0) = {(x, y, z)|z = z0} and the spaceLD(z0) of U(1)-orbits onD(z0) is
againR+, whereρ ∈ R+ corresponds to the circle of radiusρ and center (0,0, z0) inD(z0).
If ρ = 0 then the orbit is made by only a pointx0 = (0,0, z0) and the stability subgroup
H(x0,S) coincides withH⊥, i.e. p−1(0) is just the moduli space of flatU(1) connections
overΣ. If ρ > 0 thenH(x0,S) ∩H⊥ = ∅ and we get thatp−1(ρ) is the moduli space of flat
U(1) connections overΣ such thatJ = 0 on the boundary.

8. Duality

In this section we want to briefly discuss the intriguing duality properties of the model.
It is natural to expect that there may exist some relation between the Poisson sigma models
defined over the Poisson–Lie groupG and its dualG∗. The nature of this section is quite
speculative, since we cannot offer any definitive picture. Nevertheless we think that it is
worthwhile to present the following observations on the problem.

Let us start by recalling fromSection 5the relevant properties of the model. We have
pointed out that the equations of motion of the Poisson sigma model over the Poisson–Lie
groupG can be rewritten as follows:

dJA + 1

2
f̃ CBAJC ∧ JB = 0, (8.1)

dXµ − sAµ(X)JA = 0. (8.2)

Eqs. (8.1) and (8.2)are invariant under the following gauge transformations:

δβX
µ = sAµβA, (8.3)

δβJA = dβA + f̃ CBAJCβB. (8.4)

In Section 5we already drew attention to the fact that there exists the “dual” currentjA

which satisfies the equation:

djA + 1

2
fBC

AjB ∧ jC = 0, (8.5)

which can be interpreted as a Bianchi identity.Eq. (8.5)is invariant under the gauge trans-
formations:

δβj
A = dβ̃A + fCB

AjCβ̃B. (8.6)

The Poisson sigma model overG admits a particularly symmetric formulation with the
model defined onG∗. The boundary conditions are formulated in a quite dual way, see all
the discussion ofSection 5. Nevertheless we have to stress that the two models do not have
equivalent moduli spaces of solutions. For example, let us consider the two models defined
on the disk. Let us choose the boundary conditions by fixing the brane to beH ⊂ G and
H⊥ ⊂ G∗, whereH andH⊥ are complementary dual coisotropic subgroups. As we have
argued inExample 7the corresponding moduli spaces are the space ofH⊥-orbits onH and
the space ofH-orbits onH⊥. These two spaces are not related in any obvious way. There
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is an extreme situation whenH = {e} andH⊥ = G∗ and the moduli spaces are completely
different. Therefore we conclude that we cannot construct a map between the solutions of
two models taking into account the gauge equivalence. However this observation does not
exclude a more subtle interpretation of the duality for these models.

We should keep in mind that the two currentsJA andjA (as well as their gauge parameters
βA andβ̃A) are not independent in our model. Let us explore the relations between these two
currents and the corresponding gauge transformations. Using the definitions fromSection 5
we know that the currentsj andJare related to each other as followsjA + ωAµs

Bµ(X)JB = 0
and correspondingly the gauge parameters asβ̃A − sAµωBµ(X)βB = 0. The main goal is to
exclude completelyX from our consideration and to formulate a new model entirely in
terms of the currentsJ andj and symmetric in the exchange ofG andG∗.

Using the above relations between the currents we can show that the following properties
are trivially satisfied:

βAβ̃
A = 0, (8.7)

JAβ̃
A + jAβA = 0, (8.8)

jA ∧∗ JA = 0, (8.9)

where in the last equation we have introduced a metric onΣ in order to have a symmetric
pairing of one forms. We get a perfectly dual system of equations for the two currents (j, J)
defined by the flatness conditions (8.1) and (8.5) together with (8.9); the gauge transforma-
tions (β, β̃) defined by (8.4) and (8.6) must satisfy (8.7)–(8.8). In what follows we refer to
this system as the (j, J)-system. By construction the Poisson sigma models overG and over
G∗ can be embedded into this system of equations. However the (j, J)-system admits more
solutions than the original models onG and onG∗.

Let us analyze the (j, J) system in term of the Drinfeld doubleD(g) = g⊕ g∗. The two
currentsJA andjA naturally defineJ = j + J ∈ Ω1Σ ⊗ D(g) and the gauge transforma-
tions (βA, β̃A) defineB : Σ → D(g). Introducing the natural paring〈 , 〉 on D(g) (where
for the forms we can use the Hodge star operation in order to make it symmetric) we can
write the conditions (8.7)–(8.9) as follows:

〈B,B〉 = 0, 〈J,B〉 = 0, 〈J,J〉 = 0. (8.10)

These conditions are satisfied whenJandBare elements ofl ⊂ D(g), wherel is a maximally
isotropic subspace with respect to the paring on the double.

Let us describe some possible solutions of the (j, J) system. Let us consider a map
r : g∗ → g such thatrAB = −rBA, or equivalentlyr ∈ g∧ g. If we define the currents and
the gauge parameters asjA = rBAJBβ̃

A = rBAβB, then the isotropy conditions (8.10) are
solved automatically. In this case the maximally isotropic spacel is defined as follows
l = {r(t) + t|t ∈ g∗}. The flatness condition (8.1) forJ implies the flatness condition (8.5)
for j if and only if r : g∗ → g is a Lie algebra homomorphism. Under the same condition
also the gauge transformations are mapped appropriately andl is a Lagrangian subalgebra of
the double. For example, one can verify that this situation can be realized whenr solves the
classical Yang Baxter equation and the groupG has the corresponding triangular Poisson–
Lie structure.
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Another possible solutions of the (j, J)-system is given whenj is a flatH-connection
and J is a flatH⊥-connection, whereH andH⊥ are complementary dual coisotropic
subgroups. Again, if we denote withh andh⊥ the corresponding subalgebras,l = h ⊕ h⊥
is a Lagrangian subalgebra ofD(g).

It is tempting to conjecture that a generic solution of the (j, J)-system can be related
to Lagrangian subalgebrasl of the double. The solutions defined by the Poisson sigma
model are associated to a fixed symplectic leaf; by the Drinfeld theorem we can associate to
every Poisson homogeneous space (and so to every symplectic leaf) an orbit of Lagrangian
subalgebras of the double[12].

9. Summary and discussion

In this paper we have presented the analysis of the classical Poisson sigma model defined
over the Poisson–Lie groupG. We have reformulated the on-shell Poisson sigma model
overG in terms of theG∗ flat connectionsJ and the parallel sectionsX of the associated
fibre bundleΣ × G. This reformulation suggests the natural description of the boundary
conditions which are specified by the coisotropic subgroups. Using this description we are
able to describe the moduli space of the model for the generic compact Riemann surface both
without and with a boundary. We show that the moduli space is the union of the appropriate
moduli spaces of the flat connections. At the end of the paper we offer our thoughts on the
possible relation between the models overG andG∗ and also on the other possible models
defined over the whole Drinfeld double.

There are some observations which the presented analysis suggests, but which we have
not pursued further in the present paper. One of striking properties is that once we discuss
the system at the level of the equations of motions we are not confined to two-dimensional
world sheetΣ. For example, the equations(3.2) are defined in any dimensions and they are
invariant under the transformations (3.4) provided thatα is a Poisson structure. In fact the
integrability conditions of (3.2) would requireα to be a Poisson structure. This argument
goes in the spirit of the construction used in the higher spin theories (e.g., see the discussion
in Section 3 of[29]). Also we believe that the discussion of the moduli spaces inSection 6
can be generalized to arbitrary dimensions. Therefore the Poisson sigma model is defined
in any dimensions. In more than two dimensions in order to write the action we have to
introduce extra fields (the Lagrangian multipliers for the equations of motion). However
if we quantize the system and look at its relevance to the deformation quantization then
dim(Σ) = 2.

Another striking point is the following observation. In[14] it is shown that ifG is a
compact semisimple Lie group equipped with the standard Poisson–Lie structure then the
Poisson structure onG∗ is globally diffeomorphic to the linear structure on Lie(G)∗. It
suggests that the BF-theory is related to the model overG∗ with the standard Poisson–Lie
structure. However at present moment it is just a speculation.

As it was shown in[8] the Poisson sigma model over the disk leads to the Kontsevich
star product. When the target is a Poisson–Lie group the theory on the disk should be
related to quantum groups in a certain way. The generic boundary condition on the disk is
characterized by a coisotropic subgroup as we have described in this paper. In fact there
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is a believe that the coisotropic subgroups survive the quantization[10]. The coisotropic
subgroups define quantum homogeneous spaces for quantum groups and hopefully our
description of the boundary conditions in the quantum theory can produce a new insight
into the subject.

It is obvious that within this project the next natural step is to consider the present model
in the context of the quantum theory. We believe that our results should be helpful for the
quantization of the theory. We are planning to come back to this issue elsewhere.
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Appendix A

In this appendix we present the proof that for the (on-shell) general Poisson sigma model
the image ofX is contained in a single symplectic leaf. The similar argument was presented
in [5].

The first equation in (3.2) implies that each tangent vector toX(Σ) is tangent to the
symplectic leafS. However this fact alone does not imply that ImX is contained in a
single leaf. The first equation in (3.2) actually says that the image of each curveξ(t) onΣ
is an integral curve of the (parameter-dependent) vector fieldαµν(X)ηαν(ξ(t))ξ̇α(t)∂µ. Let
x(0) = x0 ∈ S then by the splitting theorem (Theorem 2.16 in[28]) it exists a neighborhood
Ux0 which is Poisson equivalent toSx0 ×N, whereSx0 = S ∩ Ux0 andN is a Poisson
manifold of zero rank atx0: the integral curve passing throughx0 then is the direct product
of a curve inS and one inN. Since existence and uniqueness of the integral curve is assured
also for parameter-dependent vector fields (modulo some assumption, see comment after
Theorem 2.1.2 of[1]), the integral curve inN passing byx0 is the constant one.
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